

建设项目竣工环境保护 验收监测报告

(审批稿)

亿科环竣监字〔2017〕第9号

项目名称: 屈原管理区营田镇生活垃圾无害化处理工程

建设单位: 屈原管理区建设管理局

湖南亿科检测有限公司

二O一七年十一月

报 告 编号: 亿科环竣监字〔2017〕第9号

承 担 单 位 : 湖南亿科检测有限公司

总 经 理:夏建兵

项 目 负 责 人 : 夏建兵(15873065088)

报 告 编 写: 钟强

审 核: 胥绪三(13973005412)

现场监测负责人: 骆炎

验收项目企业法人 : 徐扩勇

验收项目联系人 : 詹场长 15907303439 (托管运营方)

电话: 0730-8333738

邮编: 414000

地址:湖南省岳阳市经济技术开发区市环保局亿海大酒店5楼

声明:我单位对本报告内容、数据、结论负责,并承担相应的法律责任。 复制本报告中的部分内容无效

检验检测机构 资质认定证书附表

161812050369

检验检测机构名称: 湖南亿科检测有限公司

仅供屈原管理区营田镇生活垃圾无害化处理工程建设环保 **脸凇使期**,再次复奶和效01月29日

有效期至:

2022年01月28日

批准部门:

湖南省质量技术监督局

(请在证书有效期届满前3个月提出复查申请;有效期满后,不得对外出具数据和结果。)

国家认证认可监督管理委员会制

目 录

1.前言	1
2.验收监测依据	3
3.建设项目概况	4
4.主要污染源及治理措施	9
5. 环评批复要求以及落实情况	17
6. 验收监测评价标准	19
7. 验收监测分析方法及质量保证	22
8. 验收监测结果及分析	25
9. 公众意见调查	35
10 验收监测结论及建议	37
附件 1: 项目环评批复及执行标准的函	
附件 2 : 环境监察意见	
附件 3: 验收期间工况表	
附件 4: 亿科公司监测报告	
附件 5: 项目应急预案备案表	
附件 6: 项目环保投资一览表	
附件 7: 项目环保工作总结	
附件 8: 项目公众参与调查表	
附件 9: 在线监测设备协议	
附件 10: 常规性监测协议	
附件 11: 填埋场特许经营权出让协议(部分内容)	
附件 12: 科检测有限公司资质能力表	
附件 13: 建设项目工程竣工环境保护"三同时"验收登记表	
附图 1 项目地理位置图	
附图 2 项目平面布置图	
附图 3 项目现场及环保设施照片	

1 前言

屈原管理区营田镇生活垃圾无害化处理工程(以下简称垃圾处理场) 建设于屈原管理区堤防总站磊石三角洲,距营田镇规划区边缘直线距离 13km。该垃圾处理场总占地面积约 210 亩,填埋库区占地 160 亩,建设规 模为日处理生活垃圾 120t,项目填埋总库容为 85.3 万 m³,填埋服务年限为 15 年。

中国航空工业第三设计研究院于 2010 年 12 月编制了《屈原管理区营田镇生活垃圾无害化处理工程环境影响报告书》,于 2010 年 12 月 6 日取得岳阳市环境保护局:关于对《屈原管理区营田镇生活垃圾无害化处理工程环境影响报告书》的批复。

该项目于 2011 年 2 月 13 日开工建设,2014 年元月份建成,投入试运行。由湖南现代环境科技有限公司屈原分公司负责该垃圾处理场的运营(协议见附件 10)。

项目于 2015 年申请竣工环保验收,但由于项目垃圾渗透液污水处理站未完善污泥处理系统,污水站污泥未能得到及时处理,部分污染因子超标,加之还有填埋场填埋气体(因资金暂缺问题)未进行处理直接从导气石笼排放等问题,故该次竣工环保验收未通过。

项目现已完善污水处理站的污泥处理系统,污泥经干化处理并进行毒性鉴定后符合填埋标准后,定期填埋至本场填埋区;2017年11月完成填埋气体甲烷燃烧装置的建设并投入使用;2017年11月份完善在线设备的政府采购工作工作(在线设备采购成交通知书及合同见附件9)。2017年7月,屈原管理区建设管理局委托湖南亿科检测有限公司进行环保验收监测,2017年11月份对项目部分污染因子进行补测。

根据建设项目竣工环境保护验收管理办法的相关要求和规定,2017年 7月2日湖南亿科检测有限公司对该垃圾处理场进行了现场勘察,根据环评

及批复要求对该工程同步建设的环境保护污染治理设施进行了对照检查,在查阅了相关初步设计资料、环评报告书、批复意见的基础上编制了《屈原管理区营田镇生活垃圾无害化处理工程建设项目竣工环境保护验收监测方案》,2017年7月5日至2017年7月6日,湖南亿科检测有限公司现场监测人员对该项目污染物排放情况进行了现场监测,在此基础上编制了本验收监测报告。

2017年11月4日-5日,湖南亿科检测有限公司对该项目的填埋区无组织硫化氢、臭气浓度、场区另一口地下水监测井进行数据取样补测,对项目污水处理站污泥感化床污泥取样并进行毒性鉴别分析。

本次验收监测主要是通过对建设项目外排污染物达标情况、污染治理效果等的监测、环境影响评价文件及其批复的落实情况、建设项目环境管理水平的调查,为环境保护行政主管部门验收及验收后的日常监督管理提供技术依据。

2 验收监测依据

- 1、《建设项目环境保护管理条例》,国务院令第253号;
- 2、《建设项目竣工环境保护验收管理办法》,国家环保总局令第13号;
- 3、《中国环境监测总站建设项目竣工环境保护验收监测管理规定》,中国环境监测总站验字[2005]172号;
- 4、《关于加强建设项目竣工环境保护验收监测工作中污染事故防范环境管理检查工作的通知》,中国环境监测总站 验字「2005〕188号:
- 5、《湖南省建设项目环境保护管理办法》,湖南省人民政府令第215号;
- 6、《关于建设项目环境管理监测工作有关问题的通知》,湖南省环保局 (湘环发[2004] 42 号);
- 7、《屈原管理区营田镇生活垃圾无害化处理工程环境影响报告书》,中国航空工业第三设计研究院,2010年12月;
- 8、 岳阳市环保局:关于对《屈原管理区营田镇生活垃圾无害化处理工程环境影响报告书》的批复,2010年12月;
- 9、《屈原管理区营田镇生活垃圾无害化处理工程建设项目竣工环境保护 验收监测方案》,湖南亿科检测有限公司,2017年7月:
- 10、《建设项目竣工环境保护验收技术规范 生活垃圾填埋工程》(征求意见稿),环境保护部,2015年1月29日。

3 建设项目概况

3.1 工程概况

3.1.1 工程基本情况

垃圾处理工程建设项目基本情况详见下表。

表3-1 验收监测项目基本情况

类别	基本情况		
项目名称	屈原管理区营田镇生活垃圾无害化处理工程		
委托单位名称		屈原管理区建设管理局	ii
建设性质		新建	
建设地点		屈原管理区磊石三角洲	1
工程占地面积	总占地市	面积 210 亩,填埋区占地	地 160 亩
库容	填	埋场总容量为 85.3 万 r	m³·
计划使用年限	15 年		
环评情况	《屈原管理区营田镇生活垃圾无害化处理工程环境影响报告书》,中国航空工业第三设计研究院,2010年12月;岳阳市环保局:关于对《屈原管理区营田镇生活垃圾无害化处理工程环境影响报告书》的批复,2010年12月。		
工程施工单位	-		
项目运营单位	湖南现代环境科技有限公司屈原分公司		
工程投资概算	6700 万元 其中环保投资概算 广义环保投资 6700 万元		
工程建设规模	设计日处理垃圾 120t		
年工作天数	年工作 365 天, 垃圾填埋处理时间为每天 1 班 8 小时, 垃圾渗滤液处理每天三班, 每班 8 小时		

3.1.2 地理位置

本垃圾处理厂建设于屈原管理区堤防总站磊石三角洲,距营田镇规划区边缘直线距离13km。 项目地理位置见附图1。

3.1.3 场区平面布置及监测点位

项目场区平面布置及监测点位布设示意图见附图2。

3.1.4 工程建设内容

本工程主要建设内容为无害化垃圾填埋处理场的建设,其工程组成包括垃圾填埋场(主要含垃圾库、截污坝、截洪沟、防渗设施、导气设施、渗透液收集和处理系统、排水系统)、污水处理站、道路系统、生活管理区、办公区域、垃圾转运站。其他辅助设施等。工程主要建设内容见表3-2。

序号	建设内容	具体情况
1	垃圾填埋场 (垃圾库)	库容量约 85.3 万 m³
2	垃圾坝	主垃圾坝 1 座 、2 座副坝
3	防渗系统	水平防渗和边坡防渗,采用 1.5mm 双光面高密度聚乙烯 HDPE 土工膜
4	导排水系统	包括库底排水(地下水导排系统)、作业区排水系统(填埋体坡面排水系统)和地表水截排系统(截洪沟)
5	渗滤液导排与处 理设施	场底收集管沟、场导流层、排渗盲沟及排渗导气管、集水井及系统总管; 设置 1 座 13000 m³ 的渗滤液调蓄池;渗滤液处理站 1 座,处理规模为 100m³/d。
6	填埋气导气系统	填埋区内设置竖向导气石笼井,且经导气石笼排出后收集至甲烷点火 装置进行燃烧。

表3-2 工程主要建设内容

本工程公用辅助工程主要包括给排水系统、供电、通讯系统、消防系统、洗车台、地磅房、综合办公楼、食堂等。另外还根据垃圾的组成、强度及外形等特性,以及垃圾场处理规模等因素,选用一些专用机械、机具。填埋场主要生产用机械器具详见表3-3。

序号	设备名称	规格	数量(台)
1	洒水车	$3m^3$	1
2	喷药车	$1 \mathrm{m}^3$	1
3	压实机	230 马力	2
4	履带式推土机	160 马力	2
5	挖掘机	0.5m^3	2
6	装载机	4m³	2
7	运土自卸卡车	2t	2
8	加油车	1t	1
9	地磅	15t	1

表3-3 垃圾填埋场主要设备明细表

3.2 垃圾填埋工艺

根据屈原管理区的垃圾产量、组成成分及屈原管理区经济发展状况和趋势,结合国家有关政策对屈原管理区的城市总体规划,本项目选择分单元逐日覆土厌氧卫生填埋作业方法对屈原管理区产生的生活垃圾进行处理。

城市生活垃圾由屈原管理区环卫部门的垃圾运输车运至垃圾填埋场, 经垃圾填埋场入口的地磅称重记录后,通过作业平台和临时道路进入填埋 单元作业点卸车,然后由填埋机械摊平、碾压。本工程碾压作业要求分层 作业,每层压实厚度不超过60cm。压实机械在垃圾体上至少应碾压3~4个行 程以达到压实目的, 使压实密度不小于850kg/m³。当垃圾净压实厚度达到 2.3m时,覆土0.2m,构成一个2.5m厚的填埋单元,填埋场一般按每日1个填 埋单元的原则划定单元范围,并要求做到随到随埋、逐日覆土。所填埋的 垃圾随着填埋区域的水平推进和垂直叠加而填埋单元的填埋计划, 同一标 高平面上多个填埋小单元组成2.5m左右厚度的单元层,填埋单元层组成一 个高度为5m的填埋分层。当垃圾填到坝顶高程后,按1:3的坡度向后推进, 没升高5m留4m宽的骂道,随着马道的攀升再进行第二个坡度的推进,直至 最终填埋标高。为排除层面上地表径流,减少渗漏产生量,分层要形成一 个坡度向填埋区边沿截洪沟,构成集水坡弧面。分层之间设宽度为4m的作 业平台,可通行填埋机械设备,并设有截排坡面径流的排水沟。定期对截 洪沟进行清理,以减少渗滤液产生量,垃圾填埋场区的渗滤液经渗滤液收 集系统排至调蓄池、经渗滤液污水处理设施处理达标后通过专用管道排至 汨罗江: 垃圾填埋区内产生的气体经收集系统收集后导出经火炬燃烧处理: 填埋作业期间每天在填埋区进行除臭剂喷洒,以减少恶臭影响;运输车辆 出场前进行清洗。

填埋作业按上述方法依次进行,直至达到设计标高后,进行封场施工。

填埋完成后的坡面总坡度为1:3,最终风场顶面的坡度≥5%。为保证填埋场: 封场后的生态恢复,封场顶面的覆土厚度不小于1m。

覆土厌氧卫生填埋工艺,实行分层摊平、往返碾压、分单元逐日覆土的作业制度,从垃圾坝处依次自下往上分单元、分层进行填埋,直至设计高程最后封场覆盖。最终覆盖(最终覆盖系统包括填埋气体收集层,粘土隔断层、疏水层、营养土层以及植草层)后,本项目将进行封场处理,然后稳定后对之进行开发和利用。根据政府规划建设成公园、滑草场或其他娱乐场地。

垃圾填埋场作业流程及产物节点见下图:

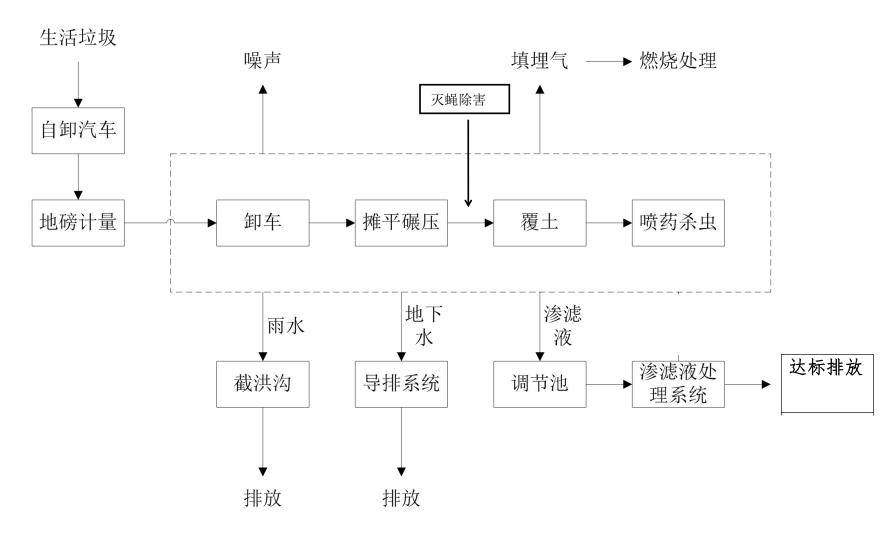


图 3-1 垃圾填埋场作业流程及产污节点图

4 主要污染源及治理措施

4.1 废水污染源及治理措施

4.1.1 废水污染源

本项目场区排水系统分雨水系统与污水系统,排水采用清污分流。项目区设独立的雨水排水系统,对已经封场的填埋区域,在每层的马道上设置表面排水沟,排入两侧截洪沟内;库区雨水经截洪沟排入溪沟内。

本项目主要废水污染源为垃圾渗滤液、少量员工生活污水以及垃圾运输车辆和卸料台的清洗水等,目前项目总废水排放量约70-80m³/d。

1、垃圾渗滤液

填埋场垃圾渗透液是垃圾发酵分解后产生的液体和外来水分(包括大气降水、地表径流水和地下水入侵)混合而成的一种含有高浓度悬浮物和高浓度有机和无机成分的液体,项目设置1座13000 m³的渗滤液调节池,目前渗滤液产生量约为65m³/d,主要污染物COD、BOD5、氨氮、总氮、悬浮物等。

2、清洗废水

根据项目实际运行情况,项目运输车辆及卸料平台、地面的清洗废水量约3-4 m³/d, 主要污染物悬浮物、COD、BOD5、氨氮等。

3、生活污水

目前垃圾场员工人数为22人,生活污水产生量约4-5 m³/d,主要污染物为COD、悬浮物、氨氮、动植物油等。

4.1.2 废水的治理和排放

项目生活污水经化粪池处理后用于周边农田及厂区菜地做农肥使用。 清洗废水通过排水管道进入调节池,垃圾渗滤液先通过贯穿垃圾坝坝体的 渗滤液导管流入调节池,经调节池进行水质水量调节后再进入污水处理系 统处理。污水处理系统采预处理+厌氧+SBR+芬顿+BAFA+消毒工艺处理,

渗透液处理处理达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中表2规定的排放限值后,经污水管沟达标排放至汨罗江。

项目废水处理工艺为预处理+厌氧+SBR+芬顿+BAFA+消毒工艺,设计处理规模为150t/d。流程图见图4-1。

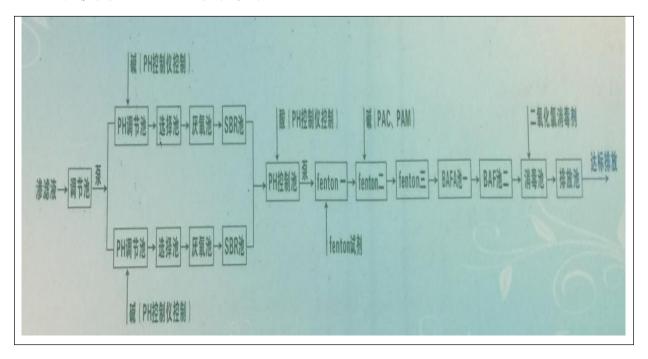


图 4-1 废水处理工艺流程图

项目污水处理站主要构筑物均为钢砼结构,涉及 pH 调节池、控制池及 fenton 池均采用两布三油进行防腐,各池体参数见下表

构筑物	尺寸 (L*B*H)
渗透液调节池	有效容积 13000m³
pH 调节池 1	2000*1200*4500
pH 调节池 2	2000*1200*4500
1#选择池	6000*1200*4500
2#选择池	6000*1200*4500
厌氧池 1	8000*7500*4500
厌氧池 2	8000*7500*4500

表 4-1 污水处理站构筑物一览表

SBR 池	14000*8000*4500
SBR 池	14000*8000*4500
pH 控制池	6575*1750*4500
Fenton1	2250*1750*4500
Fenton2	1750*1750*4500
Fenton3	3175*3250*4500
一级 BAF 池	3700*3250*4500
二级 BAF 池	3700*3250*4500
消毒池	5000*1800*4500
排放池	5000*500*600

污水处理站主要设备及其工艺参数见下表:

表 4-2 污水站设备一览表

设备材料名称	规格型号	数量
潜水搅拌机	P=2.2KW	4
罗茨风机	P=13KW、风量 10M3/Min、风压 4500	2
罗茨风机	P=5.5KW、风量 4.5M3/Min、风压 4500	2
污水提升泵	Q=12.5m³/h、H=15m	2
污泥泵	$Q=10m^3/h$, $H=10m$	1
污泥泵	$Q=25m^3/h$, $H=15m$	4
芬顿提升泵	$Q=10m^3/h$, $H=10m$	2
BAF 反冲洗泵	$Q=80m^3/h$, $H=15m$	2
计量泵	P=0.3KW, Qmax=120L	10
污泥泵	$Q=4m^3/h$ 、 $H=50m$	2
二氧化氯发生器	100g	1
脱氯机	100g	1
转子流量计	$5-25$ m 3 /h	2

pH 控制仪	WI-2000	4
芬顿三排水系统	非标	1
芬顿三导流系统	非标	1

4.2 废气污染源及治理

4.2.1 废气污染源

项目运营期主要废气为填埋气体、恶臭气体以及扬尘。

1、填埋气体

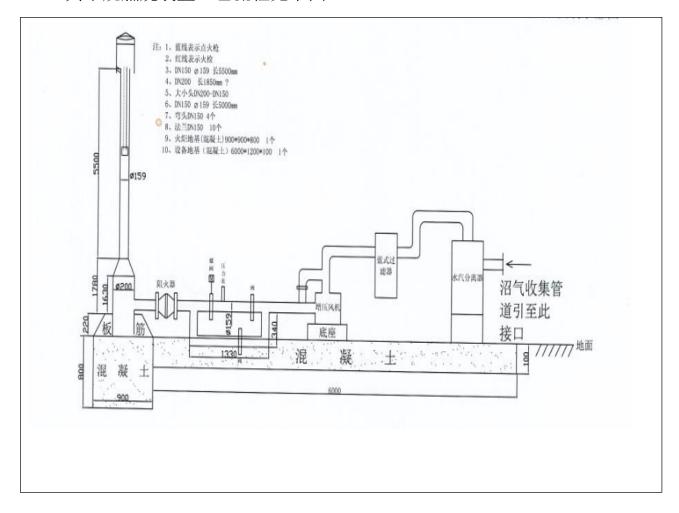
垃圾填埋后,垃圾中的有机物在微生物参与下产生降解,主要产生的填埋气体为CH4和CO₂。本项目对填埋气体进行了收集和处理,一是有效地密封填埋场四周,减少场内有害气体的排出,以保证填埋的作业安全和防止有毒、有恶臭气体污染环境;二是通过沼气石笼收集甲烷气体进行有组织地导出,借压力差将填埋气体从导气石笼导出后使用甲烷燃烧装置进行燃烧。

2、恶臭气体

项目恶臭气体主要来源包括填埋气体中的恶臭组分、渗滤液调节池及 处理设施等,主要成分为H₂S、氨气以及臭气浓度。

3、扬尘

垃圾运输、填埋过程中将产生一定量的扬尘,通过采用密闭式垃圾运输车,并适当控制车速、定期对路面进行洒水、及时清洗运输车辆等措施可有效的控制扬尘。


4.2.2 废气的治理和排放

1、填埋气体

填埋场区填埋气体的疏导采用垂直集气井排气,沿导渗总沟每隔一定

距离设置竖井一口,竖井下端与导渗沟连通,由碎石构成,竖向导渗井高于垃圾面 1m,石笼随垃圾填埋层的升高而逐渐升高。填埋气体最后通过导气石笼集中至水汽分离器,在经过蓝氏过滤后,使用增压风机进入点火装置进行燃烧。

其甲烷燃烧装置工艺流程见下图:

2、恶臭气体

整个填埋场均产生恶臭,并呈面源污染。填埋场填埋作业严格执行分单元逐日覆盖制度,在垃圾填埋过程中,及时压实垃圾并覆土,以抑制或减少臭气的散发,对来不及覆土的垃圾喷洒杀菌剂、防腐剂等来降低垃圾中有机物腐败分解的速度,短时间内防止臭气发生。填埋作业期间每天在填埋区进行除臭剂喷洒,雨天喷洒除臭抑制剂两次/天,其他天气一般每天

喷洒四次以上。渗滤液调节池设计为封闭式,调节池周围进行绿化种植; 所有垃圾运输车均采用密闭运输车,垃圾倾倒在填埋区后便立即压实,同 时每天填埋单元也将覆土压实;对于填埋场四周密封,以减少场内有害气 体的排出,保证填埋的作业安全和防止有毒、有恶臭气体污染环境。

3、粉尘

在垃圾填埋作业区、土源采掘区等区域实施定期洒水措施,以防止填埋场粉尘飞扬。对进场运输道路和场区道路将定期清扫与洒水降尘,防止运输扬尘对周围环境的影响,垃圾运输采用全封闭式罐装车。为减少垃圾飞扬物的产生,在大风天气将垃圾洒湿后再填埋。及时对植被遭破坏的区域进行复垦和绿化,以减轻填埋场扬尘对周围环境的影响。

在填埋库区车辆出场处设置了一个洗车台,出填埋场的车辆需进行冲洗,以防止填埋场尘土转移并污染到运输道路沿线。

4.3 噪声污染及其控制

项目主要噪声源为风机、水泵以及推土机、挖掘机等,其噪声值在75~90dB(A)。该项目通过合理布局,优先选用低噪声设备,高噪声设备采取隔声、减振、消音措施,并在厂区四周设置隔声绿化带等系列措施进行消声降噪。另外为了将垃圾运输车辆噪声对周围正常生活和工作的影响降至最低,企业采取加强垃圾运输过程管理,定时维护保养运输车辆,尽量做到运输途中少鸣笛。噪声产生及治理措施见表4-2。

噪声源声级 dB (A)治理措施推土机80~85通过合理布局,优先选用低噪声设备、高噪声设备采取隔声、减振、消音处理,并在厂区四周设置隔声绿化带等系列措施进行消声降噪

表4-2 噪声产生及治理措施

4.4 固体废物污染物及其控制措施

本项目污泥通过污泥浓缩池处理后,定期泵入污水站新建污泥干化床, 待自然晒干后,运至垃圾填埋场进行填埋。

经湖南亿科监测有限公司11月3日-4日对污泥取样监测,分析其浸出毒性。证明该项目污水站污泥能满足《生活垃圾填埋场污染控制标准》 GB16889-2008中表1填埋条件,可运至本填埋场进行填埋。

项目大型机械维修在填埋区域进行,维修过程中产生的废机油由维修单位带走,不在场区进行储存。

4.5 地表水和地下水污染防治措施

填埋场场地使用双层防渗工艺,填埋区内铺设有渗滤液导排系统,已建有1个有效容积1300m³的调节池。垃圾渗滤液通过导排系统送入调节池。

本工程谷底土质为粘土,基岩为板岩。本工程填埋场采用水平防渗,用高密度聚乙烯(HDPE)防渗膜防渗,防渗能力达到《生活垃圾填埋场污染控制标准》(GB16889-2008)的要求。加之采取了相应的地下水导排措施,可以有效防止地下水对防渗层的顶托破坏作用。库区的渗滤液基本无渗透,可有效地防止渗滤液污染地下水。

本场目前在污水处理站区域共布设 2 座地下水监测井, 定期对水质中进行送检, 同时对该监测井的水进行综合利用。

4.6 生态环境

- 1、水土保持措施:保护好垃圾库标高以上的植被,建设场地两侧都为山,山上树种较多,在进场道路和场区道路两旁进行了护坡,防止水土流失、保护生态环境。
 - 2、除臭灭虫措施:对臭气采取防护措施主要是对压实垃圾及时覆土,

抑制或减少臭气的散发,对来不及覆土的垃圾可喷洒杀菌剂、防腐剂等降低垃圾中有机物腐败分解的速度,可短时间内防止臭气发生,并可散布脱臭剂,以掩蔽中和或消除恶臭作用。另外场区大量的绿化建设不仅对废气能起到净化作用,还能有效地控制恶臭气体的扩散。灭虫主要采用喷药除虫的方法。

4.7 环保设施投资情况

本项目为城市垃圾卫生填埋场工作,其本身即为环境保护工程,所形成的投资即为环境保护投资,本项目的环境保护措施及投资一览表见下表。

表4-3项目环保设施投资情况表

序号	投资分项	投资额(万元)	备注
_	广义环保投资	6700	
	占总投资比例	100%	
1_1	狭义环保投资		
1	渗滤液收集处理系统	445	
2	填埋气收集及燃烧系统	33	
3	垃圾坝及挡水堤	79	/
4	防渗系统	107	/
5	排水管网	18	/
6	排污专用管道	16	
7	厂前区绿化及护坡	22	/
	总环保投资	720	/
	占总投资比例	10.7%	/

5 环评批复要求以及落实情况

屈原管理区生活垃圾填埋场建设项目环评批复及落实情况见表5-1。环 评批复见附件1。

表 5-1 环评批复主要要求及落实情况

序号	环评批复要求	落实情况
1	项目建设于屈原管理区磊石山三角洲,工程服务范围为屈原管理区,总占地面积 210 亩(填埋区占地面积 160 亩),总库容量 85.3万 m³,设计日处理垃圾 120t,服务年限 15年,工程填埋作业采用改良型厌氧卫生填埋,主要建设内容为填埋场合及配套污水处理站、道路系统、生活管理区、垃圾转运站等。	主要建设内容、垃圾填埋工艺与项目环境影响报告书及环评批复一致。
2	项目在设计、建设和管理中,应做好以下工作:合理安排工作时间,夜间不得进行产生环境噪声污染的建筑施工作业,防治噪声扰民。施工用沙石、水泥等易产生扬尘的建筑物料要求规范堆放并加以覆盖,施工现场及时洒水,防治扬尘污染,渣土车必须使用专用车辆。落实项目环境影响报告书中提出的施工期污染防治和生态恢复措施,防止水土流失和不良生态影响。	项目在建设过程合理安排作业时间,均按照环评批复要求进行施工期的污染防治工作和生态修复,施工期未对周边环境造成不良影响。
3	工程建设过程中,须按照环境保护三同时制度要求,认真落实各项污染防治措施。对填埋区按规范进行防渗建设,确保防渗层渗透系数达到相关指标。严格按照《生活垃圾填埋场污染控制标准》(GB16889-2008)要求建设,确保生活垃圾填埋场填埋区基础层底部与地下水最高水位保持1米以上的距离。规范布置地下水最高水位保持1米以上的距离。规范布置地下水监测井,做好地下水水质监测工作。按要求建设垃圾场爆炸气体导出、处置系统。突出垃圾渗漏液废水处理重点,确保渗漏液处理系统出水实现稳定达标排放。	建设容积为1万m³的调节池和处理规模为100m³/d的渗透液处理设施,能保证垃圾渗透液经过处理后稳定达标排放、。项目设置一口地下水监测井,位于污水处理站区域。填埋区安装有填埋气收集及导出系统。项目于2017年11月完善填埋气燃烧处理系统。

序号	环评批复要求	落实情况
4	合理布置设备、车间,确保恶臭、废气、噪声的产生点远离周边居民敏感点。加强运营期管理,填埋施工应严格实行单元填埋、随到随压、当日覆土、洒水降尘、喷洒妖姬,防治垃圾飞扬、蚊蝇滋生和恶臭污染。建立风险应急预案,杜绝垃圾填埋场填埋区爆炸气体安全事故以及暴雨条件下的废水溢流等风险环境事故的发生。项目大气防护距离内不得建设居民点等敏感点建筑。	项目设备、车间均经过专业单位设计,合理布置。填埋施工实行单元填埋、随到随压、层层压实、当日覆盖制度,采取洒水降尘、喷洒消毒杀菌剂等措施对扬尘恶臭污染进行了防治。居民敏感点周边房屋已进行征收。项目已经做好《环境突发事件应急预案》,并完成备案。项目已做好500m场界的卫生防护距离内的居民搬迁和补偿工作,卫生防护距离50m范围内未新建居民、学校、医院等环境敏感建筑。项目距离屈原管理区7KM,不在屈原管理区城城市规划范围内,有较远距离。
5	项目投入试运行前,影响我局提交试运行申请,经我局对现场核查同意后方可进行试运行。项目试运行三个月内须向我局申请环保竣工验收。验收合格后,项目可投入正式运行。	项目现已申请验收。
6	加强项目的环境管理,确保各项污染防治设施的正常运转和污染物的长期、稳定达标。	本项目建立有环境管理机构,垃圾填埋 场场长主管环保,配备了基本的监测仪器 并对部分污染因子开展日常监测,同时委 托第三方检测公司对项目水、气、声进行 常规性检测。 环保设施均正常运行

6 验收监测评价标准

6.1 废水验收监测执行标准

根据项目环评设计(批复要求未明确该部分内容)及岳阳市环境保护局屈原管理区分局针对本项目的执行标准函,本项目垃圾渗滤液排放执行《生活垃圾填埋场污染控制标准(GB16889-2008)》表2排放标准,标准中未涉及的污染因子执行《污水综合排放标准》(GB8978-1996)表1中一级标准,项目废水排放限值见表6-1。

监测点位	污染因子	排放限值	验收执行标准
	COD	100 mg/L	
	рН	6-9	
	BOD_5	30 mg/L	
	悬浮物	30 mg/L	
	氨氮	25 mg/L	
	总磷	3 mg/L	
污水处理站进出	粪大肠菌群数	10000 个/L	《生活垃圾填埋场污染控制标准
	总汞	0.001mg/L	(GB16889-2008)》表 2 排放标准
	总镉	0.01mg/L	
	总砷	0.1mg/L	
	总铅	0.1mg/L	
	总铬	0.1mg/L	
	六价铬	0.05mg/L	
	色度	40 (稀释倍数)	

表6-1 废水执行标准及其限值

6.2 废气验收监测执行标准

无组织排放的氨、硫化氢、臭气浓度污染物厂界排放限值执行《恶臭污染物排放标准》(GB14554-93)二级新改扩建标准,无组织排放总悬浮颗粒物执《大气污染物综合排放标准(GB16297-1996)》表2中的无组织排放监控浓度限值。

项目废气验收监测执行标准见表6-2。

类别	污染因子	标准限值	验收执行标准
그 사이 사이 쉬는		1.5 mg/m 3	
★ 无组织排放废气	臭气浓度	20 无量纲	《恶臭污染物排放标准》(GB14554-93)表 1 中新改扩建厂界标准值二级排放标准
////	硫化氢	0.06 mg/m 3	
无组织排 放废气	颗粒物	120 mg/m ³	《大气污染物综合排放标准 (GB16297-1996)》 表 2 限值

表6-2 废气执行标准及其限值

6.3 噪声验收监测执行标准

项目厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008) 2类标准,具体标准值见表6-3。

类别	时段	计量单位	标准值	验收执行标准
厂界噪声	昼间	dB(A)	60	《工业企业厂界环境噪声排放标准》
<i>) 介</i> 際円	夜间	dB(A)	50	(GB 12348-2008)2 类

表6-3 厂界噪声执行标准及其限值

6.4 地下水、地表水验收监测执行标准

地下水监测参照《地下水质量标准》(GB/T14848-93)中Ⅲ类标准,详细见表6-4。

监测点位	项目	标准值	验收执行标准
	рН	6.5-8.5	
	氨氮	≤0.2 mg/L	
	COD	-	
地下水监测井	砷	≤0.05 mg/L	《地下水质量标准》 (GB/T14848-1993)
地下小血侧开	汞	≤0.001 mg/L	(GB/114646-1993 <i>)</i> Ⅲ类标准
	铅	≤0.05 mg/L	
	镉	≤0.01mg/L	
	细菌总数	≤100 ↑ /L	

表6-4 地下水执行标准及其限值

地表水验收监测执行标准: 汨罗江地表水其水质监测参照《地表水环境质量标准(GB3838-2002)》

中3类标准,详见下表。

表6-5 地表水监测执行标准

监测点位	项目	标准值	验收执行标准
	рН	6~9	
	COD	20 mg/l	
	氨氮	1.0 mg/l	
】 汨罗江	汞	0.0001 mg/l	《地表水环境质量标准 (GB3838-2002)》中Ⅲ类标
旧夕 仁	镉	0.005 mg/l	准
	砷	0.05 mg/l	, ,,,,
	铅	0.05 mg/l	
	TP	0.2 mg/l	

7 验收监测分析方法及质量保证

7.1 质量控制与质量保证

为了确保监测数据的合理性、可靠性和准确性,必须对监测的全过程 (包括布点、采样、样品运输、实验室分析、数据处理等)进行质量控制。 湖南亿科检测有限公司做出以下质控措施:

- 1、验收监测在环保设施正常运行情况下进行,验收期间项目的生产负荷必须达到设计能力的75%以上。
 - 2、严格按照验收监测方案要求开展监测工作。
- 3、参加验收监测采样和测试的人员,均应按国家有关规定持证上岗。 监测仪器经计量部门检定合格并在有效使用期内。
- 4、采样人员严格遵守采样操作程序,认真填写采样记录,按规定保存、运输样品。
 - 5、监测分析采用国家有关部门颁布的标准分析方法或推荐方法。
- 6、水质监测分析过程中的质量保证和质量控制。水样的采集、运输、 保存、实验室分析和数据计算的全过程均按照规范要求进行。
- 7、气体监测分析过程中的质量保证和质量控制。尽量避免被测排放物中共存污染因子对仪器分析的干扰。被测排放物的浓度应在仪器测试量程的有效范围即仪器量程的 30%~70%之间。烟尘、烟气监测(分析)仪器在测试前按监测因子分别用标准气体和流量计对其进行校核(标定),在测试时应保证其采样流量的准确。
- 8、噪声监测分析过程中的质量保证和质量控制。声级计在测试前、后用标准发声源进行校准,测量前、后仪器的灵敏度绝对值相差不大于 0.5dB,若大于 0.5dB则测试数据无效。
 - 9、监测数据和报告执行三级审核制度。

7.2 监测分析方法

7.2.1 采样方法

监测采样按照《大气污染物无组织排放监测技术导则》(HJ/T 55-2000)、《地表水和污水监测技术规范》(HJ/T 91-2002)、《地下水环境监测技术规范》(HJ/T 164-2004)、《工业企业厂界环境噪声排放标准》(GB12348-2008)等国家规范要求执行。

7.2.2 监测分析方法

项目监测分析方法见表7-1。

表 7-1 监测分析方法一览表

类别	监测项目	监测方法	方法标准	使用仪器	最低检出限
P 6	氨	纳氏试剂 分光光度法	НЈ537-2009	紫外可见 分光光度计	0.01mg/L
废气	硫化氢	直接显色比色法	GB/T 14678-1993	7230G 分光光度计	0.006mg/m ³
	颗粒物	重量法	GB/T 15432-1995	电子天平	/
	рН	玻璃电极法	GB/T 6920-1986	PHS-3C 型 pH 计	2.00-12.00
	SS	重量法	GB 11901-1989	FA2014N	/
	CODer	重铬酸钾法	GB11914-1989	/	10.0mg/L
	BOD ₅	稀释接种法	НЈ 505-2009	/	2mg/L
	SS	重量法	GB 11901-1989	AB204-S\A 电子天平	4mg/L
	氨氮	滴定法	НЈ 537-2009	/	0.20mg/L
	总磷	钼酸铵分光光度法	GB 11893-1989	723 分光光度计	0.01mg/L
废水	粪大肠菌群	多管发酵法	HJ/T 347-2007	SPJ-250	/
	总汞	原子荧光法	水和废水监测分析 方法(第四版)	AFS-930 型双通道 原子荧光光度计	0.00002mg/L
	总镉	火焰原子吸收 分光光度法	GB/T 7475-1987	AA6300C	0.001mg/L
	总砷	原子荧光法	水和废水监测分析 方法(第四版)	AFS-930 型双通道 原子荧光光度计	0.0002mg/L
	总铅	火焰原子吸收 分光光度法	GB 7475-1987	AA6300C	0.01mg/L
地下	рН	玻璃电极法	GB/T 6920-86	PHS-3C 型 pH 计	2.00-12.00
水	SS	重量法	GB 11901-1989	FA2014N	/

类别	监测项目	监测方法	方法标准	使用仪器	最低检出限
	氨氮	纳氏试剂 分光光度法	НЈ 535-2009	723 分光光度计	0.025mg/L
	砷	原子荧光法	水和废水监测分析 方法(第四版)	AFS-930 型双道原 子荧光光度计	0.0003mg/L
	汞	原子荧光法	水和废水监测分析 方法(第四版)	AFS-930 型双道原 子荧光光度计	0.00002mg/L
	铅	原子吸收 分光光度法	水和废水监测分析 方法(第四版)	AA6300C	0.01mg/L
	镉	原子吸收 分光光度法	水和废水监测分析 方法(第四版)	AA6300C	0.001mg/L
	细菌总数	多管发酵法	НЈ/Т 347-2007	细 SPJ-250	/
噪声	工业噪声	工业企业厂界噪声 测量方法	GB12349-90	AwA6218B 噪声统计分析仪	/

8 验收监测结果及分析

8.1 验收监测期间工况

据建设单位统计(附件5),监测期间填埋场垃圾日均接收量为99吨。监测期间,该垃圾填埋场处于正常运营,运营时间为每天8小时。主要环保设施运行正常。验收监测期间生产负荷见下表。

监测时间 日设计处理量(T) 日实际处理量(T) 实际生产负荷
2017年7月5日 101 84.1%
2017年7月6日 97 80.3%

表 8-1 验收监测期间工况负荷统计

验收监测期间本项目垃圾日填埋量负荷为80.3%、84.1%。达到75%以上已满足国家对建设项目竣工环保验收监测的技术要求。

8.2 废水监测内容

8.2.1 废水验收监测内容

废水监测内容见下表,监测布点见附图2。

 类别
 监测点位
 监测项目
 监测频次

 废水
 废水处理设施 进口、出口
 COD、BOD、TP、NH3-N、pH、SS、 Pb、Cd、Hg、As、色度、粪大肠菌群、总 铬、六价铬
 3 次/天×2 天

表 8-2 废水验收监测内容

8.2.2 监测结果及评价

废水监测结果见下表。

表 8-3 废水监测结果

						<u> </u>		*>1 + TITE (>/1 >>								
监	UE NEGLE I.				监测组	吉果 (单位: mg	g/L; 粪大肠	汤菌群单	位: 个/	L; pH、色	度无单位	7)			
测地点	监测时 间	频次	COD	BOD ₅	SS	氨氮	总磷	总汞	总镉	рН	总砷	总铅	粪大肠 菌群	总铬	六价 铬	色度
废		第一次	1300	751	46	10.7	5.62	0.00027	ND	8.78	0.0150	ND	16000	ND	0.140	320
水	2017.7.	第二次	1340	715	46	11.7	5.58	0.00043	ND	8.76	0.0142	ND	16000	ND	0.146	320
处理		第三次	1400	761	47	9.4	5.55	0.00057	ND	8.72	0.0142	ND	≥24000	ND	0.100	320
装		第一次	1240	734	43	12.4	5.61	0.00030	ND	8.95	0.0152	ND	≥24000	ND	0.131	320
置	2017.7.	第二次	1390	736	44	11.7	5.69	0.00044	ND	8.53	0.0147	ND	16000	ND	0.118	320
进口	0	第三次	1410	757	43	9.7	5.61	0.00050	ND	8.66	0.0150	ND	16000	ND	0.126	320
废		第一次	36.5	3.57	16	0.709	ND	ND	ND	7.20	0.00182	ND	1300	ND	ND	8
水 处	2017.7.	第二次	37.1	3.59	17	0.684	ND	ND	ND	7.15	0.00062	ND	1100	ND	ND	8
理		第三次	34.0	3.56	15	0.699	ND	ND	ND	7.35	0.00107	ND	1300	ND	ND	8
装		第一次	37.6	3.52	17	0.689	ND	ND	ND	7.30	0.00066	ND	1300	ND	ND	8
置出	2017.7.	第二次	38.2	3.53	17	0.724	ND	ND	ND	7.47	0.00165	ND	1100	ND	ND	8
口口	-	第三次	39.3	3.33	15	0.709	ND	ND	ND	7.20	0.00096	ND	1100	ND	ND	8
	排放标准		100	30	30	25	3	0.001	0.01	6-9	0.1	0.1	10000	0.1	0.05	40
	是否达标		是	是	是	是	是	是	是	是	是	是	是	是	是	是

注: ND 为该项目监测结果低于最低检出限。

由表 8-3 可知,在总排口监测的各项污染物中 COD、BOD、TP、NH3-N、pH、SS、Pb、Cd、Hg、As、粪大肠菌群、色度、总铬、六价铬的排放浓度均达到《生活垃圾填埋场污染控制标准(GB16889-2008)》表 2 中标准限值。

8.3 废气排放监测

8.3.1 废气验收监测内容

废气验收监测内容见下表,监测布点见图3-2。

 类别
 监测点位
 监测项目
 监测频次

 无组织排 放废气
 上风向设 1 个参照点,下 风向布设 3 个监控点
 颗粒物、硫化氢、氨、臭气浓度
 3 次/天×2 天

表 8-4 废气验收监测内容

由于项目填埋废气浓度较低,甲烷浓度无法达到甲烷燃烧设备所需浓度,燃烧设备无法正常燃烧,项目暂未完善甲烷燃烧装置,且验收监测期间未对甲烷燃烧设备燃烧废气进行实测。

8.3.2 监测结果及评价

无组织排放废气监测结果见下表。

表 8-5 废气监测结果 单位: mg/m³ (臭气浓度无量纲)

	检测 项目			检测	结果				
监测 地点			2017.7.5			2017.7.6	国家标准	是否达 标	
75 M	78.0	1次	2 次	3 次	1次	2 次	3 次		1/2,1
	颗粒物	0.16	0.15	0.16	0.15	0.18	0.18	1.0	是
厂界上	硫化氢	0.026	0.028	0.033	0.023	0.027	0.033	0.06	是
风向 G1	氨	0.27	0.35	0.23	0.33	0.40	0.28	1.5	是
	臭气浓度	6	7	7	5	7	6	20	是
	颗粒物	0.24	0.26	0.21	0.30	0.24	0.27	1.0	是
厂界下	硫化氢	0.042	0.045	0.053	0.059	0.060	0.060	0.06	是
风向 G2	氨	0.24	0.18	0.30	0.30	0.18	0.25	1.5	是
	臭气浓度	10	9	12	10	12	9	20	是
厂界下	颗粒物	0.27	0.25	0.23	0.23	0.23	0.24	1.0	是
ノ カイド 风向 G3	硫化氢	0.051	0.049	0.047	0.057	0.055	0.052	0.06	是
) M:1 G3	氨	0.31	0.25	0.31	0.28	0.33	0.39	1.5	是

	检测 项目								
监测 地点		2017.7.5				2017.7.6	国家标准	是否达 标	
1 10 m	/X FI	1次	2 次	3 次	1次	2 次	3 次		140
	臭气浓度	11	10	11	10	12	11	20	是
	颗粒物	0.28	0.24	0.26	0.26	0.26	0.28	1.0	是
厂界下	硫化氢	0.053	0.043	0.046	0.049	0.051	0.047	0.06	是
风向 G4	氨	0.18	0.35	0.25	0.36	0.25	0.23	1.5	是
	臭气浓度	12	10	12	12	12	10	20	是

注: <表示该项目监测结果低于最低检出限。 硫化氢、臭气浓度于 11 月 4-5 日进行补充检测。

由上表可知,监测期间项目无组织废气颗粒物浓度监测最大值符合《大气污染物综合排放标准》(GB16297-1996)相应标准限值要求, 氨气、硫化氢、臭气浓度最大浓度平均值符合《恶臭污染物排放标准(GB14554-93)》中相应标准限值要求。

8.4 噪声监测

8.4.1 噪声监测内容

在厂界四周各布设1个噪声监测点位,监测内容见表8-7,监测点位见图 3-2。

表 **8-6** 噪声监测工作内容

监测类别	监测项目	监测点位	监测频次
厂界噪声	等效 A 声级	厂界东南西北四周各布设1个点,	监测2天,昼、夜各监测1
<i>)</i>	□ 寺双 A 戸级	分别为 N1、N2、N3 和 N4	次

8.4.2 监测结果及评价

厂界噪声监测结果下表。

表 8-7 厂界噪声监测结果 LeqdB(A)

测点	主要	检测		昼间噪声	声排放值		夜间噪声排放值			
编号	声源	日期	L _{eq} dB(A)	ΔL_1 $dB(A)$	ΔL_2 dB(A)	评价	L _{eq} dB(A)	ΔL_1 dB(A)	ΔL_2 dB(A)	评价
	厂界噪声	7月4日	52.6	/	/	/	40.5	/	/	/
a	a / 芥罘円	7月5日	51.5	/	/	/	37.7	/	/	/
h	厂界噪声	7月4日	49.6	/	/	/	39.7	/	/	/
b		7月5日	50.7	/	/	/	41.2	/	/	/
	厂界噪声	7月4日	50.6	/	/	/	41.3	/	/	/
c	<i>1 1</i> 15%円 	7月5日	51.2	/	/	/	38.9	/	/	/

d	厂界噪声	7月4日	51.8	/	/	/	41.4	/	/	/
u	カが紫戸	7月5日	49.8	/	/	/	41.8	/	/	/

由上表可见,厂界四周噪声昼间测值范围为 49.6 ~52.46dB(A),夜间噪声测值范围为 38.9~4409dB(A),部分厂界噪声均符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)2 类标准限值。

8.5 地下水、地表水监测

8.5.1 地下水监测内容、结果及评价

根据《生活垃圾填埋场污染控制标准》(GB16889-2008)要求,该项目设置有带地下监测底井 1 眼,2017年7月5日及6日,进行取样监测,监测结果如下:

表 8-8 地下水监测结果 LeqdB(A)

检测地点	检测项目	计量单位	检测时间	检测结果
	рН	无量纲		6.90
				6.75
				6.82
	化学需氧量	mg/L		7.46
				10.2
				6.63
		mg/L		1.45
	氨氮			1.43
				1.41
				33
	细菌总数	个/L		42
地下水监测井1			7 8 5 0	37
地下小监侧开 1		mg/L	7月5日	ND
	铅			ND
				ND
	镉	mg/L		ND
				ND
				ND
				ND
	汞	mg/L		ND
				ND
	砷	mg/L		0.0188
				0.0247
				0.0206
检测地点	检测项目	计量单位	检测时间	检测结果
	рН	无量纲	7月6日	6.85
44. 下水				6.71
				6.83
地下水监测井1	化学需氧量	mg/L		8.21
				8.37
				8.62

	<u></u>			
	氨氮	mg/L		1.47
				1.37
	细菌总数	个/L		32
				34
				41
				ND
	铅	mg/L		ND
		_		ND
				ND
	镉	mg/L		ND
				ND
				ND
	汞	mg/L		ND
				ND
				0.0198
	神	mg/L		0.0232
		8 =		0.0227
备注	1.该检	测报告仅对本次样品		
检测地点	检测项目	计量单位	检测时间	检测结果
TE MACE WILL	EW. VI	71里11	127.00.11.0	6.77
	рН	- 无量纲		6.83
	pii	//1至41		6.79
				10
	化学需氧量	mg/L		8
	化子而判里	mg/L		11
				0.129
	氨氮	mg/L		0.153
				0.144
				85
	细菌总数	个/L		67
	四四心奴	/L		59
地下水监测井 2			11月4日	ND
	铅	mg/L		ND
		mg/L		ND
				ND
	镉	mg/L		ND
		1119/12		ND
				ND
	汞	mg/L		ND
	/10	mg/L		ND
				16.8
	 神	ug/L		16.8
	1 11-11	ug/L		16.0
检测地点	检测项目	计量单位	检测时间	检测结果
1元1×11→12/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	1四次20人口	1 里十匹	J57.1X(1 tr.) 1 tr.)	6.88
地下水监测井 2	рН	- - 无量纲		6.71
				6.92
		mg/L	11月5日	9
	化学需氧量			10
20 1 /11皿/州/1 4	ru于 m 刊里	mg/L	11/JJ H	10
				0.165
	复 国 氨	mg/I		0.163
	氨氮	mg/L		0.172
		l .	<u> </u>	0.139

	细菌总数	个/L		73 59
				77 ND
	铅	mg/L		ND
	7.5	mg 2		ND
				ND
	镉	mg/L		ND
				ND
				ND
	汞	mg/L		ND
				ND
				16.4
	砷	ug/L		17.1
				16.8
备注	1.该检测报告仅对本次样品负责。2.ND 表示未检出。			

由表上表可知,监测期间在地下水监测井水样各项污染因子中,COD、TP、NH3-N、pH、Pb、Cd、Hg、As、细菌总数的排放浓度均达到《地下水监测参照《地下水质量标准》(GB/T14848-93)中III类标准限值要求。

8.5.2 地表水监测内容

监测项目、监测点位及监测频次:

本项目污水处理站排水排至山塘,再排至汨罗江,2017年7月5日-6日,湖南亿科检测有限公司对山塘水质进行取样监测,监测内容见下表。

表 8-9 地表水水塘水质监测工作内容

I	监测类别	监测项目	监测点位	监测频次
	地表水	pH、 COD、NH3-N、As、 Pb、Cd、Hg、 总磷	山塘	3 次/天×2 天

8.5.3 地表水监测结果及评价

监测水质监测结果见下表。

表 8-10 地表水监测结果

检测地点	检测项目	计量单位	检测时间	检测结果
地表水监测	рН	无量纲	7月5日	7.34
				7.46
				7.38
	化学需氧量	mg/L		17.8
				18.6
				18.7
	氨氮	mg/L		0.539

	I			0.774
				0.774
				0.634
	以 7 米	/T		0.0697
	总磷	mg/L		0.0699
				0.0692
	Ьп	/T		ND
	铅	mg/L		ND
				ND
	<i>}</i> □	/T		ND
	镉	mg/L		ND
				ND
				ND
	汞	mg/L		ND
				ND
				0.00523
	砷	mg/L		0.00554
				0.00543
		7月6日		
检测地点	检测项目	计量单位	检测时间	检测结果
				7.25
	рН	无量纲		7.60
	r			7.41
	化学需氧量	mg/L		18.4
				18.6
				18.2
		mg/L		0.549
	氨氮			0.759
				0.624
		mg/L		0.0695
	总磷			0.0698
				0.0702
地表水监测			7月6日	ND
	铅	mg/L		ND
				ND
				ND
	镉	mg/L		ND
				ND
				ND
	汞	mg/L		ND
		mg/L		ND
			+	0.00525
	砷	mg/L		0.00542
	. н.н.	IIIg/L		0.00562
备注	1 治水	L 公测报 生仅 对末 次 样	_ 品负责。2.ND 表示未	」
田仁	1. 以允	业奶取口区对平认件	明火火。 2.ND 农小才	~1 <u>짜 [[]</u>

由上表可见,山塘所监测的指标中各项污染因子均满足《地表水环境质量标准》(GB3838-2002)三类标准要求。

8.6 污水处理站污泥浸出液毒性鉴别

监测项目、监测点位及监测频次:

本项目由湖南亿科检测有限公司 11 月 4 日于污水处理站干化床污泥进行取样监测,监测内容见下表。

表 8-11 污泥浸出毒性鉴别工作内容

监测类别	监测项目	监测点位	监测频次
污泥浸出 液毒性鉴 别	含水率、汞、铜、锌、铅、镉、砷、 总铬、六价铬	污水站干化床污 泥	1 次/天×1 天

污泥毒性鉴别结果及评价 监测结果见下表:

表 8-12 污泥浸出毒性鉴别结果 (除浓度为百分比外其他均为 mg/L)

监测污染物项目	监测时间	监测结果	浓度限值(mg/L)
含水率		18%	30%
汞		0.00012	0.05
铜		ND	40
锌	11月6日	ND	100
铅		ND	0.25
镉		ND	0.15
砷		0.009	0.3
总铬		ND	4.5
六价铬		ND	1.5

由上表可见,污水站污泥浸出毒性鉴别所监测的指标中各项污染物项目均达到 《生活垃圾填埋场污染控制标准》GB16889-2008 中表 1 浓度限值要求,可直接运至填埋进行填埋。

8.7 环境管理检查

经对屈原管理区垃圾处理场环境设施现场认真检查,检查情况见下表。

表 8-13 环境管理检查一览表

序号 类 别	具体内容及其完成情况
--------	------------

1	环境保护审批手续及环境保护档案资料;具备环境 影响评价文件和环保部门批复意见;环境保护档案 管理情况	环保档案、环评手续齐全,建立了环 境保护档案管理
2	环保组织机构及规章管理制度是否健全;制定相应的应急制度,配备和建设的应急设备及设施情况	设置了环保专人管理,明确了环保安全管理机构,并制定了相应的环保管理制度及事故应急预案
3	环境保护设施建成及运行记录	废水处理系统运行正常,运行记录规 范、完整
4	环境保护人员和仪器设备的配置情况	配备了环保管理人员,有监测仪器设备
5	工业固(液)体废物是否按规定或要求处置和回收 利用	渗滤液处理站污泥和生活垃圾及时送 库区填埋。
6	排污口建设情况	设置了规范化排污口,标牌
7	卫生防护距离内住户情况	卫生防护距离内的居民均安置但未进 行拆迁,但有部分住户自愿在农忙时 间段住进房屋
8	生态恢复、绿化建设落实情况	厂区裸露的地方种植了草皮、树木
9	施工期和试运行期扰民现象的调查	无投诉现象

8.8 环境风险防范措施检查

本项目可能发生的环境风险事故主要有垃圾坝溃决、强降雨、防渗层破损、填埋气体爆炸、渗滤液输送及事故排放等。针对不同的环境风险,本项目制定了相应的风险防范措施及应急预案,并于屈原管理区环境保护局完成了备案 (附件 5),确保在发生环境污染事件时,各项应急工作能够快速、高效、有序地启动和运行,最大限度减轻污染事故对环境造成的损失,保障公众生命健康和财产安全。经对屈原管理区垃圾填埋场环境风险防范措施认真检查,检查情况见下表。

表 8-14 环境风险防范措施检查一览表

序号	风险防范项目	具体措施
1	垃圾坝溃决 风险防范	(1) 坝址区已根据工程地质报告,严格按照要求做好了防漏、防渗处理,确保渗滤液能够有效收集,不渗入基础土壤中与地下水系中; (2) 确保场内排水系统和库周截洪沟的畅通,在雨季特别是暴雨期加强对垃圾填埋场、垃圾坝的巡逻检查,如发现垃圾坝出现裂缝及时采取补救措施;

序号	风险防范项目	具体措施
		(3) 垃圾场服务期满后,按规定进行土地复垦和日常管理、维护,并按有关要求进行生态或植被的恢复,确保垃圾库的稳定。
2	强降雨风险防范	(1) 场区设置有截洪沟,确保未被污染的强降水直接导出场外,减少暴雨对垃圾填埋场的冲击;
		(2) 垃圾填埋过程中,及时覆土压实,以免轻易被地表径流冲刷流失。
		(1) 基础施工时清除场地内的一切尖硬物体,已将场地平整、压实;
	防渗层破损 风险防范	(2) 防渗材料选用有一定厚度的优质材料,确保 HDPE 人工膜防渗层、人工膜粘土保护层的施工质量;
3		(3) 如发现防渗层有破损现象,及时修整;
		(4) 定期对地下水日常监测,发现监测井水质异常,及时分析原因,将破坏区域隔离,并进行防渗膜修补,尽量减小对地下水的污染;
		(5)禁止危险废物进入垃圾卫生填埋场,及时排出垃圾渗滤液,防止化学腐蚀加速防渗材料的老化。
		(1) 安装有 CH ₄ 导气管及填埋气燃烧系统。
	填埋气体爆炸	(2) 场区设置有"禁止明火"的警示牌和避雷设施;
4	风险防范	(3) 场区设置足够宽的防火隔离带及应急通道;
		(4)设置有消防泵站及室外地上式消火栓,配备了足够的消防器具,设有消防水池((水塘),对员工的定期开展安全教育,举行消防演练。
5	渗滤液输送及事	(1) 渗滤液收集池容量为 5000m³,可保证储存 50 天以上的垃圾场渗滤液产生量及场区内其他污水;
	故排放风险防范	(2) 当场内污水处理设施发生事故时,及时关闭阀门,杜绝渗滤液外排。
6	环境应急预案	已编制环境风险应急预案,并备案。

9 公众意见调查

周边居民已完成征收及补偿,同时已征收房屋业主无偿提供给农户在农忙时段使用。项目在运行过程中未出现环境纠纷事件。

为了广泛听取公众对本项目环保"三同时"竣工验收的看法和意见,验收期间对本项目附近居民(农忙时段使用已征收的房屋)进行调查,发放公众意见调查表 3 份,收回公众意见调查表 3 份,有效调查表 3 份(见附件 8)。

本次公众参与的对象文化程度从小学、初中、高中文化阶层均有反映,因此可以认为,此项调查具有代表性、广泛性,随机性高,结果可信。

公众调查结果表明,当地群众已有比较强的环境保护意识,本项目施工期对周边居民有一定的影响,但项目建设完成后,周边住户房屋已征收,对该项目运行期间的环境保护工作满意程度较高。

10 验收监测结论及建议

10.1 验收监测结论

屈原管理区垃圾填埋场的建设(建成部分)基本执行了国家环境保护"三同时"的要求,各项环保设施运行正常,公司内都有健全的环保制度。验收监测期间该垃圾填埋场处于正常运营,验收监测工作严格按有关规定进行,验收监测结果可以反映实际排污情况。

10.1.1 废水排放验收监测结论

监测期间,在总排口监测的各项污染物中 COD、BOD、TP、NH3-N、pH、SS、Pb、Cd、Hg、As、粪大肠菌群、色度、总铬、六价铬的排放浓度均达到《生活垃圾填埋场污染控制标准(GB16889-2008)》表 2 中标准限值。

10.1.2无组织废气排放验收监测结论

由验收监测报告可知,监测期间项目无组织废气颗粒物浓度监测最大值符合《大气污染物综合排放标准》(GB16297-1996)相应标准限值要求, 氨气、硫化氢、臭气浓度最大浓度平均值符合 《恶臭污染物排放标准(GB14554-93)》中相应标准限值要求。

10.1.3 噪声验收监测结论

由验收监测报告可知,验收期间,厂界四周噪声昼间测值范围为49.6~52.46dB(A),夜间噪声测值范围为38.9~4409dB(A),均符合《工业企业厂界环境噪声排放标准》(GB 12348-2008)2类标准限值。

10.1.4 地下水、地表水验收监测结论

由验收监测报告可知监测期间,在地下水监测井水样各项污染因子中,COD、TP、NH3-N、pH、SS、Pb、Cd、Hg、As、细菌总数的排放浓度均达到《地下水监测参照《地下水质量标准》(GB/T14848-93)中III类标准

限值要求。

由验收监测报告可知监测期间,项目山塘监测的指标中项污染因子均满足《地表水环境质量标准》(GB3838-2002)三类标准要求,。

10.1.5 环境管理检查

屈原管理区垃圾填埋场场设立了环保规章制度,外委专业环保公司进行托管运营。项目有专人负责环保现场管理,负责对废气、废水处理设施进行管理和监控,安排设备检修人员对环保设备进行维护,建立一套完整的规章制度,设立了环境保护档案管理。

10.1.6 验收监测结论

屈原管理区垃圾填埋场各项环保设施运转正常,垃圾渗透液处理工以 及设备较为先进。废气、废水、等各项污染因子的监测数据达标,噪声部 分因子未达标。

该项目基本达到环评、环评批复及相关环境管理要求,建议项目通过 环保验收。

10.2 建议

- 1、加强环境管理,确保各项污染物长期稳定达标排放。
- 2、建议制定环境空气、地下水监测计划,与具有监测能力的环境检测单位签订协议定期对废气、废水各项污染因子进行监测,定期向环保主管部门汇报,一旦发现监测数据异常,做好相应处置工作;健全环境风险防范管理体系,定期开展环境应急事故演练。
- 3、进一步强化场区内雨污分流、填埋区避雨措施,定期对雨水沟进行 清理,以减少渗滤液的量,以减轻污水处理系统的工作负荷。
- 4、建议定期对项目地下水监测井的水质进行监测,确保项目不对周边 地下水造成影响。

附件 1: 项目环评批复及执行标准的函

岳阳市环境保护局

关于对《屈原管理区营田镇生活垃圾无害化处理工程 建设项目环境影响报告书》的批复

屈原管理区建设管理局:

你局报来的《屈原管理区营田镇生活垃圾无害化处理工程建设项目环境影响报告书》已收悉。2010年11月27日,我局组织专家对该项目《报告书》进行了技术评审。环评单位中国航空工业第三设计研究院依据评审意见对报告书做了修改,形成了报批稿。经研究,现批复如下:

一、你局建设的屈原管理区营田镇生活垃圾无害化处理工程建设项目位于磊石三角洲,距营田镇规划边界约 16km。项目总投资 6700 万元。项目总占地面积约为 139860 平方米,填埋库区总占地面积 160 亩,总库容约为 85.3 万平方米,填埋场服务年限为 15 年,日处理能力 120 吨,项目总投资 6700 万元。建设内容包括垃圾库、垃圾坝、截洪沟、防渗设施、渗滤液收集与处理设施、地下水导排系统、沼气导出处理及综合利用设施等。采用分单元逐日覆土厌氧填埋方式。填埋作业采用自下而上,分阶段进行。该项目是一项社会公益性基础设施建设项目,它的建设对改善屈原区环境卫生条件、提高区内人民生活质量,增强城市可持续发展能力具有积极意义。根据中国航空工业第三设计研究院编制的环评报告书的分析结论和专家评审意见,在建设单位认真落实报告书提出的各项污染防治措施、确保污染物达标排放的前提下,同意工程建设。

- 二、项目在设计、建设和管理中,应重点做好以下工作:
- 1、合理安排施工时间,夜间(晚十时至次日晨六时)不得进行产生环境噪声污染的建筑施工作业,防止噪声扰民。施工用沙石、水泥等易产生扬尘的建筑物料要求规范堆放并加覆盖,施工现场及时洒水,防止扬尘污染,渣土运输必须用专用车辆。落实项目环境影响报告书提出的施工期污染防治和生态恢复措施,防止水土流失和不良生态影响。
- 2、工程建设过程中,须按照环境保护"三同时"制度要求,认真落实各项污染防治措施。对填埋区须按规范进行防渗建设,确保防渗层的渗透系数达到相关指标。严格按《生活垃圾填埋场污染控制标准》(GB16889-2008)要求建设,确保生活垃圾填埋场填埋区基础层底部与地下水年最高水位保持1米以上的距离。规范布设地下水监视井,做好地下水水质监测工作。按要求建设垃圾场爆炸性气体导出、处置系统。突出垃圾渗漏液废水处理重点,确保渗漏液处理系统出水实现稳定达标排放。
- 3、合理布局设备、车间、确保产生恶臭、废气、噪声的产生点远离周边居民等环境敏感点。加强营运期管理、填埋施工应严格实行单元填埋、随到随压、当日复土、洒水降尘、喷洒药剂、防止垃圾飞扬、蚊蝇滋生和恶臭污染。建立风险应急预案、杜绝垃圾场填埋区爆炸气体安全事故以及暴雨条件下的废水溢流等环境风险事故的发生。项目大气防护距离内不得建设居民点等环境敏感建筑。

2

- 4、项目投入试运行前,应向我局提交试运行申请,经我局现场核查同意后方可进行试运行。项目试运行3个月内须向我局申请环保竣工验收。验收合格后,项目方可投入正式运行。
- 5、加强项目的环境管理,确保各项污染防治设施的正常运转和污染物排放的长期、稳定达标。

三、项目的日常监督检查工作由屈原区环保分局负责。

3

細市环境保护局屈原管理区分局

关于《屈原管理区营田镇生活垃圾无害化处理 工程》环境影响评价标准执行函

一、环境质量标准

1、空气环境: 执行《环境空气质量标准》(GB3095-1996) 和关于发布《环境空气质量标准》(GB3095-1996) 修改单的通知中的二级标准。NH₃和 H₂S 参照执行《工业企业设计卫生标准》(TJ36-79)中居住区大气中有害物质的最高允许浓度限值。

- 2、水环境: 汨罗江评价水域执行《地表水环境质量标准》(GB3838-2002) III类标准: 地下水执行《地下水质量标准》(GB/T14848-93) 中的III类标准。
- 3、声环境: 执行《声环境质量标准》(GB3096-2008)中的 2 类标准。
- 4、土壤: 执行《土壤环境质量标准》(GB15618-95)二级标准。
 - 二、污染物排放标准
 - 1、废气: 执行《大气污染物综合排放标准》

(GB16297-1996) 中的二级标准和《恶臭污染物排放标准》 (GB14554-93) 中的二级标准。

2、废水: 执行《生活垃圾填埋场污染控制标准》 (GB16889-2008)表 2标准; 该标准中未涉及的污染因子执行 《污水综合排放标准》(GB8978-1996)表 1中的一级标准。

3、噪声: 执行《工业企业厂界环境噪声排放标准》 (GB12348-2008) 2 类标准; 施工期噪声执行《建筑施工场界噪声限值》(GB12523-90)。

4、固体废物

执行《生活垃圾填埋场污染控制标准》(GB16889-2008)。

岳阳市环境保护局屈原管理区分局

关于屈原管理区营田镇生活垃圾无害化处理工程建设项目环保"三同时"竣工验收环境监察意见

2017年11月18日,屈原分局环境监察大队到达屈原管理 区营田镇生活垃圾无害化处理工程建设项目现场,按照环评及批 复要求进行了项目环保设施"三同时"竣工验收现场监察。

一、项目基本情况:

为满足区生活垃圾无害化处理要求,屈原管理区营田镇生活垃圾无害化处理工程位于屈原管理区堤防管理总站(磊石三角洲),项目总投资6700万元,其中环保投资2264万元;项目于2010年12月6日取得岳阳市环境保护局环评批复,2010年12月启动建设,2013年3月基本建设完成并投入试运行,2017年6月13~14日由湖南亿科检测有限公司对项目环保设施"三同时"验收监测。

- 二、环保防治设施执行情况,环评批复落实情况及验收监测 情况
 - 1、经现场监察,该项目地址、建设规模、主要设备、污染

防治措施与环评申报及批复一致。

- 2、该项目已按环评及批复实施"卫生防护距离界内居民拆迁、地库清理及防渗、垃圾渗漏液处理系统、生活化粪池建设、气体导排系统、环境管理和在线监测"工作,严格按照《生活垃圾填埋场污染控制标准》(GB16889-2008)要求建设。
- 3、该项目建设期施工设备采用设置围挡、防尘网、沉淀池、临时化粪池等处理设施,通过洒水、清扫、保洁等措施为对周边环境造成影响,未引起污染投诉。建成后项目内的设施设备等噪声源均合理布置,渗漏液经处理后达标排放。
- 4、该项目已落实项目沼气自动点火、在线监控及环境应急相关设施及物资。项目按规定建立规范填埋管理,并加强生活收集、运转等环节的污染管理工作。

三、监察意见

屈原管理区营田镇生活垃圾无害化处理工程项目建设中,严格执行"三同时"制度,未发生污染事故及环境纠纷事件,目前环评批复中的各项要求基本得到落实并建立健全的环境管理制度,同时制定了相关的风险防范措施,经湖南亿科检测有限公司对该项目竣工验收监测,该项目排放废水、废气、噪声所测各项污染物指标基本满足环评及批复要求。从环境监察角度分析:屈原管理区营田镇生活垃圾无害化处理工程建设项目符合"三同时"竣工验收要求。

四、监管要求及建议

- 1、加强填埋场的日常环境管理。
- 2、完善并细化渗漏液污水处理设施及环保设施的标识牌,填写好污水处理站日常运行台账并做好相关存档。
- 3、加强污水处理设施管理及操作人员的环保专业知识和技能的训练,确保污水处理站正常运行,各项污染物因子稳定达标排放。
- 4、加强填埋场作业机械的废机油管理,集中收集、存贮, 交由有资质的单位处置。
 - 5、完善污染防治处理设施运行台账。

附件 3: 验收期间工况表

屈原管理区验收监测期间生产负荷统计表

监测时间	日设计处理量(T)	日实际处理量(T)	实际生产负荷
2017年7月5日	120	101	84.1%
2017年7月6日	120	97	80.3%

湖南现代环境科技股份有限公司屈原分公司(托管运营方)

2017.7.6

附件 4: 亿科公司监测报告

湖南亿科检测有限公司检测报告

亿科检测(2017) 第 07-01 号 第 1 页 共 17 页

检测报告

编号: 亿科检测(2017) 第 07-01 号

岳阳市屈原管理区营田镇生活垃圾无害化处理填

项目名称:

埋场项目验收委托检测

检测类型:

委托检测

岳阳市屈原管理区营田镇生活垃圾无害化处理填

委托单位:

埋场

检测单位

湖南亿科检测有限公司

发出日期

2017 年 7 月 13 日

0000085431

亿科检测(2017) 第 07-01 号 第 2 页 共 17 页

注 意 事 项

- 1. 本页所列注意事项条款适用于湖南亿科检测有限公司计量认证范围内(包括职业卫生、空气和废气、土壤、底质和固体废物、噪声等)项目分析检测报告,位于检测报告第2页。
- 2. 本公司对外发出的报告,未盖本公司业务公章、未盖骑缝章、未盖计量认证章、 填报人未签字、审核人未签字及签发人未签字的报告均属无效报告。
- 3. 本报告送样委托检测样品名称、标识等由送检方提供,本公司不负责其真伪, 检测结果仅对委托样品负责。
- 4. 如委托检测单位对本报告有异议,应于收到报告发出之日起 15 日内,向本公司提出书面要求,陈述有关疑点及申诉理由,如仍有不服者,可向质量监督部门提出书面仲裁要求,逾期则视为认可检测结果。
- 5. 本报告的非完整复印件无效,完整复印件未加盖本公司红色公章及骑页章无效。 单独抽出某些页导致误解或用于其它用途而造成的后果,本公司不负任何法律责任。
- 6. 本报告除手工签字外,不存在任何手工涂改与增删内容,本公司留有复印件和 扫描件备查。
 - 7. 未经本公司同意,任何单位或个人不得用本报告及本公司的名义作广告宣传。

湖南亿科检测有限公司

电话: 0730-8333738

邮编: 414000

地址: 岳阳市岳阳楼区岳阳大道市环保局附楼 5 楼

亿科检测(2017) 第 07-01 号 第 3 页 共 17 页

50

废水检测报告单(1)

检测地点	检测项目	计量单位	检测时间	检测结果
				8.78
	pН	无量纲		8.76
				8.62
				1300
	化学需氧量	mg/L		1340
				1430
				46
	悬浮物	mg/L		47
				47
				10.7
	氨氮	mg/L		11.7
				9.4
				751
	五日生化需氧量	mg/L		715
立圾渗透液污水				761
处理站进口		The second second	7月5日	5.62
	总磷	mg/L		5.58
	1			5.55
				ND
	铅	mg/L		ND
				ND
	Mr. du	镉 mg/L	Single-de Diff	ND
	镉			ND
			. 1.74.1	ND
	500 E00 100 100 100 100 100 100 100 100 1		0.00027	
	汞	mg/L		0.00043
				0.00057
				0.0150
	石 申	mg/L		0.0142
				0.0142

亿科检测(2017) 第 07-01 号 第 4 页 共 17 页

废水检测报告单(2)

检测地点	检测项目	计量单位	检测时间	检测结果
	рН	无量纲		8.95
				8.53
				8.66
				1240
	化学需氧量	mg/L		1390
	l'agglian s'ha			1410
				43
	悬浮物	mg/L		44
			N and a control of	43
				12.4
	氨氮	mg/L		11.7
				9.7
		mg/L		734
	五日生化需氧量		7月6日	736
垃圾渗透液污水				757
处理站进口	总磷	mg/L	7月6日	5.61
				5.59
			11	5.61
		铅 mg/L		ND
	铅			ND
				ND
	镉	mg/L	War. 1	ND
				ND
				ND
				0.00030
	汞	mg/L		0.000441
				0.00050
				0.0152
	种	mg/L		0.0147
				0.0150
备注	1.该检	测报告仅对本次样品	负责。2.ND 表示未构	佥出 。

亿科检测(2017) 第 07-01 号 第 5 页 共 17 页

H

废水检测报告单(3)

检测地点	检测项目	计量单位	检测时间	检测结果
	The second second			320
	色度	倍		320
				320
				16000
	粪大肠菌群	个/L		16000
			7月5日	≥24000
	TE The Prince of Francisco		7 / 1 3 1	ND
	总铬	mg/L		ND
				ND
	六价铬			0.140
		mg/L		0.126
垃圾渗透液污水				0.100
处理站进口	色度	倍	7月6日	320
				320
				320
	粪大肠菌群	个儿		≥24000
				16000
				16000
				ND
	总铬	mg/L		ND
				ND
	Dr. Ja	ALK WAR		0.131
	六价铬	mg/L		0.118
	16.6	71 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.126
备注	1.该检	测报告仅对本次样品。	负责。2.ND 表示未	佥出 。

亿科检测(2017) 第 07-01 号 第 6 页 共 17 页

废水检测报告单(4)

检测地点	检测项目	计量单位	检测时间	检测结果
	рН	无量纲		7.20
				7.15
				7.35
				36.5
	化学需氧量	mg/L		37.1
				34.0
				16
	悬浮物	mg/L		17
				15
				0.709
	氨氮	mg/L		0.684
		10.000000000000000000000000000000000000		0.699
		mg/L	Way.	3.57
	五日生化需氧量			3.59
垃圾渗透液污水			7月5日	3.56
处理站出口		mg/L	7月3日	ND
	总磷		11 1	ND
				ND
		mg/L		ND
	铅			ND
				ND
	Br a.	mg/L		ND
	镉			ND
	II dank		. 1744	ND
				ND
	汞	mg/L		ND
				ND
				0.00182
	砷	mg/L		0.00062
				0.00107
备注	1.该柃	测报告仅对本次样品	负责。2.ND 表示未构	金出 。

亿科检测(2017) 第 07-01 号 第 7 页 共 17 页

废水检测报告单(5)

检测地点	检测项目	计量单位	检测时间	检测结果
				7.30
	pН	无量纲		7.47
				7.20
				37.6
	化学需氧量	mg/L		38.2
				39.3
				17
	悬浮物	mg/L		17
				15
				0.689
	氨氮	mg/L		0.724
				0.709
				3.52
	五日生化需氧量	mg/L		3.53
立圾渗透液污水		A Wath	7月6日	3.33
处理站出口	grammat a	mg/L	7月0日	ND
	总磷			ND
				ND
				ND
	铅	mg/L		ND
X X				ND
	Br. As	-P-T HA	Part II	ND
	镉	mg/L	31111	ND
	Manual .	, I illigit		ND
				ND
	汞	mg/L		ND
				ND
	The service of the se			0.00066
	砷	mg/L		0.00165
				0.00096

亿科检测(2017) 第 07-01 号 第 8 页 共 17 页

废水检测报告单(6)

检测地点	检测项目	计量单位	检测时间	检测结果
				8
	色度	倍		8
				8
				1300
	粪大肠菌群	个/L		1100
			7月5日	1300
			77131	ND
	总铬	mg/L		ND
				ND
		mg/L		ND
	六价铬			ND
立圾渗透液污水		and the second second		ND
处理站出口			Mary Control of the C	8
	色度	倍	Barrier, Comment	8
				8
				1300
	粪大肠菌群	个/L		1100
	N. 1		7月6日	1100
			7)10 П	ND
	总铬	mg/L		ND
				ND
	III do	THE LA	War, 1, 10	ND
	六价铬	mg/L	3	ND
				ND
备注	1.该检	测报告仅对本次样品:	负责。2.ND 表示未构	金出 。

亿科检测(2017) 第 07-01 号 第 9 页 共 17 页

地下水检测报告单(1)

检测地点	检测项目	计量单位	检测时间	检测结果
	17000			6.90
	pH	无量例		6.75
				6.82
	12 We 11 (27 / 47			7.46
	化学需氧量	mg/L		10.2
				6.63
				1.45
	90.90	mg/L		1.43
				1.41
	VII. 19470011000	↑/L		33
	细菌总数			42
地下水监测井			7月5日	37
AD T O'CHENTY	450	mg/L	7/1/241	ND
	40			ND
	- / /	1 44	A \	ND
				ND.
	496	mg/L		ND
				ND
	100			ND
	张	mg/L		ND
				ND
	Brog.		753.8	0.0188
	争中	mg/L	27HH	0.0247
	16	1 37	1753	0.0206
备往	1.诺检》	则报告仅对本次样品	负责。2.ND表示未	变出:

亿科检测(2017) 第 07-01 号 第 10 页 共 17

地下水检测报告单(2)

检测地点	检测项目	计量单位	检测时间	检测结果
				6.85
	pH	无量均		6.71
	9100			6.83
				8.21
	化学需氧量	mg/L		8.37
				8.62
	1000			1.47
	规度	mg/L		1.42
				1,37
		个几		32
	细菌总数			34
BET A DENNI B			* H x D	41
地下水监测井		Figm	7月6日	ND
	悟		A	ND
	//			ND
				ND
	報	mg/L		ND
	1.0		7.7	ND
				ND
	汞	mg/L		ND
	5.652			ND
	12-6	44 15	NOTE.	0.0198
	60	mg L	· 5/1111	0.0232
	14	1.1.17	[70]	0.0227
各往	1.000	斯报告仪对本次将品	负责。2.ND 表示未	ès.

亿科检测(2017) 第 07-01 号 第 11 页 共 17

地表水检测报告单(1)

检测地点	检测项目	计量单位	检测时间	检测结果
				7.34
	рН	无量纲		7.46
				7.38
				17.8
	化学需氧量	mg/L		18.6
				18.7
				0.539
	氨氮	mg/L		0.774
				0.634
				0.0697
	总磷	mg/L		0.0699
地表水监测			7月5日	0.0692
地衣小血侧		mg/L	7月3日	ND
	铅			ND
			N N	ND
	loscessed es	Lancard Income and Lancard	Logicanos	ND
	镉	mg/L		ND
	N. 1		1/	ND
				ND
	汞	mg/L		ND
				ND
	Arc do	TI LA	MICH.III	0.00523
	神	mg/L	y	0.00554
	A Second			0.00543
备注	1.该检:	则报告仅对本次样品	负责。2.ND 表示未构	金出 。

亿科检测(2017) 第 07-01 号 第 11 页 共 17

地表水检测报告单(1)

检测地点	检测项目	计量单位	检测时间	检测结果
				7.34
	рН	无量纲		7.46
				7.38
				17.8
	化学需氧量	mg/L		18.6
				18.7
				0.539
	氨氮	mg/L		0.774
				0.634
			7月5日	0.0697
	总磷	mg/L		0.0699
地主を版調				0.0692
地表水监测				ND
	铅	mg/L		ND
	/ /			ND
	Assessed a	Constitution of the profession of		ND
	镉	mg/L		ND
				ND
				ND
	汞	mg/L		ND
				ND
The Trebuild Indian	Ar de	ALT TA	Water No. 100	0.00523
	砷	mg/L	y	0.00554
	A Company	71 7 11 11 11 11 11 11 11 11 11 11 11 11		0.00543
备注	1.该检	测报告仅对本次样品生	负责。2.ND 表示未	检出。

亿科检测(2017) 第 07-01 号 第 12 页 共 17

地表水检测报告单(2)

检测地点	检测项目	计量单位	检测时间	检测结果
				7.25
	рН	无量纲		7.60
				7.41
	2520			18.4
	化学需氧量	mg/L		18.6
				18.2
				0.549
	氨氮	mg/L		0.759
				0.624
		mg/L		0.0695
	总磷			0.0698
14 ままれが到			7 8 4 9	0.0702
地表水监测			7月6日	ND
	铅	mg/L		ND
				ND
	Salare to a salare			ND
	镉	mg/L		ND
	\ \ \		11	ND
				ND
	汞	mg/L		ND
				ND
	Dr. du	at II de	Par. h_M	0.00525
	砷	mg/L		0.00542
		1.1. 11.1.	. 1.4.	0.00562
备注	1.该检	测报告仅对本次样品	负责。2.ND 表示未	:检出

亿科检测(2017) 第 07-01 号 第 13 页 共 17

无组织废气检测报告单(1)

检测点位	检测日期	检测时间	风向	气温 (°C)	气压		並测项目 位: mg/m	³)	
	1	1200.01.0	7.7.7.2		(KPa)	颗粒物	硫化氢	氨气	
I E +		第一次	北风	25. 3	100. 3	0.16	0. 037	0. 27	
上风向 (1#)		第二次	北风	27.9	100. 5	0.15	0.044	0.35	
(1117)		第三次	北风	26. 1	100. 1	0. 16	0.040	0. 23	
756		第一次	北风	24. 7	100. 4	0. 24	0.064	0. 24	
下风向 (1#)		第二次	北风	28. 2	100.6	0. 26	0.051	0. 18	
,	7月5日	第三次	北风	26. 3	100. 4	0.21	0.053	0.30	
755	1711	第一次	北风	26. 1	100. 3	0.27	0.081	0.31	
下风向 (2#)		第二次	北风	28. 4	100. 5	0.25	0.040	0.25	
(211)		第三次	北风	26. 5	100.3	0.23	0.042	0.31	
7 5 4		第一次	北风	26. 3	100. 4	0.28	0.097	0.18	
下风向 (3#)		第二次	北风	28.8	100. 5	0. 24	0.068	0.35	
		第三次	北风	25. 6	100.3	0. 26	0.070	0.23	
备注	1.该检测报告仅对本次样品负责。2.ND表示未检出。								

亿科检测

亿科检测(2017) 第 07-01 号 第 14 页 共 17

无组织废气检测报告单(2)

检测点位	检测日期	检测时间	风向 气温		气压	检测项目 (单位: mg/m³)			
				(℃)	(KPa)	颗粒物	硫化氢	氨气	
1 1 1		第一次	北风	26. 2	100. 2	0.15	0. 037	0. 33	
上风向 (1#)		第二次	北风	28. 7	100. 4	0.18	0.042	0.40	
(1117)		第三次	北风	27. 5	100. 1	0. 18	0.039	0. 28	
T-151-6-1		第一次	北风	26.8	100.3	0.30	0.060	0.30	
下风向 (1#)		第二次	北风	28. 5	100. 2	0. 24	0.050	0.18	
	7月6日	第三次	北风	27. 3	100.4	0.27	0.047	0.25	
754	1701	第一次	北风	26. 4	100.3	0. 23	0.074	0. 28	
下风向 (2#)		第二次	北风	28.9	100.2	0.24	0.038	0.33	
		第三次	北风	27. 3	100.1	0.24	0.037	0.39	
		第一次	北风	26. 7	100.3	0.26	0.088	0.36	
下风向 (3#)		第二次	北风	28.6	100.2	0.26	0.065	0.25	
(011)		第三次	北风	27. 2	100.4	0.28	0.062	0.23	
备注		1.该检测报告仅对本次样品负责。2.ND表示未检出。							

亿科检测

亿科检测(2017) 第 07-01 号 第 15 页 共 17

无组织废气检测报告单(3)

检测地点	检测项目	计量单位	检测	时间	检测结果
上风向 (1#)	臭气浓度	无量纲	7月5日	第一次 第二次 第三次	
下风向 (1#)	臭气浓度	无量纲	7月5日	第一次 第二次 第三次	
下风向 (2#)	臭气浓度	无量纲	7月5日	第一次 第二次 第三次	
下风向 (3#)	风向(3#) 臭气浓度		7月5日	第一次 第二次 第三次	
上风向 (1#)	甲烷	mg/m³	7月5日	第一次 第二次 第三次	ND ND ND
下风向 (1#)	甲烷	mg/m³	7月5日	第一次 第二次 第三次	ND ND ND
下风向 (2#)	(2#) 甲烷 mg/m³		mg/m³ 7月5日		ND ND ND
下风向 (3#)	甲烷	mg/m³	7月5日	第一次 第二次 第三次	ND ND ND
备注	1.该检	测报告仅对本次样品	L 五负责。2.ND		

亿科检测(2017) 第 07-01 号 第 16 页 共 17

无组织废气检测报告单(4)

检测地点	检测项目	计量单位	检测	时间	检测结果
				第一次	
上风向 (1#)	臭气浓度	无量纲	7月5日	第二次	
				第三次	
				第一次	
下风向 (1#)	臭气浓度	无量纲	7月5日	第二次	119 18 1
				第三次	
				第一次	
下风向 (2#)	臭气浓度	无量纲	7月5日	第二次	
				第三次	
The second second				第一次	
下风向 (3#)	臭气浓度	无量纲	7月5日	第二次	
		The second second second	· Maria	第三次	
			Maria.	第一次	ND
上风向 (1#)	甲烷	mg/m³	7月5日	第二次	ND
	-			第三次	ND
				第一次	ND
下风向 (1#)	甲烷	mg/m^3	7月5日	第二次	ND
				第三次	ND
	1			第一次	ND
下风向 (2#)	甲烷	mg/m^3	7月5日	第二次	ND
	For a	Latella NET Year offer	No in the H	第三次	ND
	11/	1 4 3	r vill	第一次	ND
下风向 (3#)	甲烷	mg/m^3	7月5日	第二次	ND
		107 100° 100°		第三次	ND
备注	1.该检	测报告仅对本次样品	占负责。2.ND	表示未检出。	

亿科检测(2017) 第 07-01 号 第 17 页 共 17

环境噪声检测报告单

自心	丘	四亩园百篇	祖口堂	口结片汗	+15+17+15+	HH +Z.,	66.左4	바다	\\\	罗市	
	ILI					生物				シル 界噪声	
				CONTRACTOR OF THE PROPERTY OF						4点(天)	
							侧点多	以日	2000		
							仪器校	准值		93.7 dB	
22.00						口上	0.4	1	1881 1881 1891 1890 11	93.6dB	
於1 午		大气: 晴	17.	圡: 100.1	kPa	风速:				26.8 °C	
> 15		GB 3096	5-2008 《芦	古环境质量	-					/	
下准	HJ 70		e tomatony en la traff			植修正》	and the control of th			60	
										50	
主	要	检测			1						
声	源	日期	L_{eq} dB(A)	ΔL_1 dB(A)	ΔL_2 dB(A)	评价	L _{eq} dB(A)	1,22 - 1,22 - 1,22	ΔL_2) dB(A	1 14-110	
一田	唱書	7月4日	52.6	/	/	/	40.5	/	/	/	
1 1	保尸	7月5日	51.5	1	1	1	37.7	/	/	/	
一田	唱書	7月4日	49.6	1	1	1	39.7	/	/	/	
1 1	紫尸	7月5日	50.7	-1	1	1	41.2	/	/	1	
一田	品書	7月4日	50.6	1	1	1	41.3	/	1	/	
1 21	紫尸	7月5日	51.2	1	1	/	38.9	/	/	/	
一角	品書	7月4日	51.8	1	1	1	41.4	/	1	1	
1 1	紫严	7月5日	49.8	1	/	1	41.8	/	1	/	
				• d			A -	lt			
							-	东			
			4			100 y					
				填埋场		•a					
		101 70	Real Property			10.0	n. 10-400				
				1							
				•t)						
			1 1-3-1	人加尼	/ \(\alpha\)	6 14 E E	=				
			1. 13人	並 测结果	汉刈平位	八件而贝	页。	松			
	声 厂界 厂界 厂界	也址	世址 项目地 対向 20 (器 AWA (器 AWA (器 FC: 晴 (B 3096 HJ 706-2014《环境 主要	型址 项目地厂界四,2017年7。 (器 AWA621B-多 AWA621B-多 AWA6221B)	项目地厂界四周界外ー 2017 年 7 月 45 日 AWA621B-多功能声级	項目地厂界四周界外一米处 1	項目地厂界四周界外一米处 1	現日地	項目地厂界四周界外一米处 样品类別 2017 年 7 月 45 日 观点数目 仪器	項目地厂界四周界外一米处 採品类別 万月	

填报人:

以下空白,无其它检测结果与说明。

审核人: は 分 るの

签发人: 156

2017年11月4日-5日补测报告单

湖南亿科检测有限公司检测报告

检测报告

编 号: 亿科检测(2017) 第 07-01-02 号

岳阳市屈原管理区营田镇生活垃圾无害化处理填

项目名称: 埋场项目验收补充检测

岳阳市屈原管理区营田镇生活垃圾无害化处理填

委托单位: 埋场

采样时间: 11月3日、4日

检测类型: 委托检测

第1页共8页

注 意 事 项

- 1. 本页所列注意事项条款适用于湖南亿科检测有限公司计量认证范围内(包括职业卫生、空气和废气、土壤、底质和固体废物、噪声等)项目分析检测报告,位于检测报告第2页。
- 2. 本公司对外发出的报告,未盖本公司业务公章、未盖骑缝章、未盖计量认证章、 填报人未签字、审核人未签字及签发人未签字的报告均属无效报告。
- 3. 本报告送样委托检测样品名称、标识等由送检方提供,本公司不负责其真伪, 检测结果仅对委托样品负责。
- 4. 如委托检测单位对本报告有异议,应于收到报告发出之日起 15 日内,向本公司提出书面要求,陈述有关疑点及申诉理由,如仍有不服者,可向质量监督部门提出书面仲裁要求,逾期则视为认可检测结果。
- 5. 本报告的非完整复印件无效,完整复印件未加盖本公司红色公章及骑页章无效。 单独抽出某些页导致误解或用于其它用途而造成的后果,本公司不负任何法律责任。
- 6. 本报告除手工签字外,不存在任何手工涂改与增删内容,本公司留有复印件和 扫描件备查。
 - 7. 未经本公司同意,任何单位或个人不得用本报告及本公司的名义作广告宣传。

湖南亿科检测有限公司

电话: 0730-8333738

邮编: 414000

地址: 岳阳市岳阳楼区岳阳大道市环保局附楼 5 楼

第2页共8页

5131

水质检测报告单(1)

检测地点	检测项目	检测时	寸间	检测结果 (mg/L) 除标注外			
			第一次	6.77(无量纲)			
	рН	11月4日	第二次	6.83(无量纲)			
			第三次	6.79(无量纲)			
			第一次	10			
	化学需氧量	11月4日	第二次	8			
地下监测			第三次	11			
井			第一次	0.129			
	氨氮	11月4日	第二次	0.153			
			第三次	0.144			
	17	êi b		16.8 (ug/L)			
	神	11月4日	第二次	16.8 (ug/L)			
			第三次	16.0 (ug/L)			
备注	1.该检测结果仅对本次样品负责。2.ND 表示未检出。						

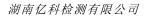
第3页共8页

水质检测报告单(2)

检测地点	检测项目	检测印	寸间	检测结果 (mg/L) 除标注外				
			第一次	0.002ND				
	铅	11月4日	第二次	0.002ND				
			第三次	0.002ND				
			第一次	0.05ND				
	镉	11月4日	第二次	0.05ND				
地下监测			第三次	0.05ND				
井			第一次	0.04ND				
	汞	11月4日	第二次	0.04ND				
			第三次	0.04ND				
			第一次	85 (个/升)				
	细菌总数	11月4日	第二次	67 (个/升)				
			第三次	59 (个/升)				
备注	1.该检测结果仅对本次样品负责。2.ND 表示未检出。							

第 4 页 共 8 页

水质检测报告单(3)


检测地点	检测项目	检测的	寸间	检测结果(mg/L) 除标注外
			第一次	6.88(无量纲)
	рН	11月5日	第二次	6.71(无量纲)
			第三次	6.92(无量纲)
			第一次	9
	化学需氧量	11月5日	第二次	10
地下监测			第三次	10
井	Survey of		第一次	0.165
	氨氮	11月5日	第二次	0.172
			第三次	0.159
	11	ter 4		16.4 (ug/L)
	砷	11月5日	第二次	17.1 (ug/L)
			第三次	16.8 (ug/L)
备注	1.该检测结果位	仅对本次样。	品负责。2	2.ND 表示未检出。

第 5 页 共 8 页

水质检测报告单(4)

检测地点	检测面日	检测项目 检测时间 检测		检测结果 (mg/L)			
1四4001四六	位例次日	1977 4次11日	.1 I+1	除标注外			
			第一次	0.002ND			
	铅	11月5日	第二次	0.002ND			
		. X 119, -1	第三次	0.002ND			
			第一次	0.05ND			
	镉	11月5日	第二次	0.05ND			
地下监测			第三次	0.05ND			
井	汞		第一次	0.04ND			
		11月5日	第二次	0.04ND			
			第三次	0.04ND			
	10		第一次	73 (个/升)			
	细菌总数	11月5日	第二次	59 (个/升)			
			第三次	77(个/升)			
备注	1.该检测结果仅对本次样品负责。2.ND 表示未检出。						

第6页其8页

污泥浸出液毒性鉴别报告单

检测地点	检测项目	检测时间	检测结果 (mg/L 除标注外
	含水率		18%
	汞		0.00012
	铜		ND
污泥干化	锌	11月6日	ND
床污泥	锁		ND
1/14/1/10/2	把		ND
	砷		0.009
	总铬		ND
	六价铬		ND
各注	1.该检测结果仅	对本次样品负责。	2.ND 表示未检出。

第7页共8页

无组织废气检测报告单(1)

检测点	4人3回口4日	日台	气温	气压	检测浓度 (单位: mg/m³)	
位	检测日期	风向	(℃)	(KPa)	臭气浓度 (无量纲)	硫化氢
上风向		南风	16. 2	100.2	6	0. 026
(1#)		南风	17.6	100.1	7	0.028
(1117)		南风	16. 9	100. 2	7	0.033
T-121-4-		南风	17. 2	100.1	10	0.042
下风向 (1#)		南风	18. 3	100. 2	9	0.045
(1117)		南风	16. 4	100. 1	12	0.053
T'IJ 스	11月4日	南风	17. 3	100.2	11	0.051
下风向 (2#)		南风	18. 4	100.3	10	0.049
(217)		南风	16.9	100. 2	11	0.047
工员台		南风	17.3	100. 2	12	0.053
下风向 (3#)	Europe States	南风	18.8	100. 1	10	0.043
(011)		南风	16.8	100.3	12	0.046
备注	1.该检测	l结果仅x	讨本次样品	占负责。 2	2.ND 表示未检验	Н.

亿科检测

湖南亿科检测有限公司

第8页共8页

无组织废气检测报告单(2)

检测点			气温	气压	检测浓度 (单位: mg/m³)	
位	检测日期	风向	(℃)	(KPa)	臭气浓度 (无量纲)	硫化氢
		南风	15. 9	100. 2	5	0.023
上风向 (1#)		南风	16.8	100.1	7	0.027
(1#)		南风	15. 2	100.2	6	0.033
		南风	16. 2	100.3	10	0.059
下风向 (1#)		南风	17.3	100.2	12	0.060
(1#)	11 8 5 11	南风	16.4	100.2	9	0.060
	11月5日	南风	15. 3	100.1	10	0.057
下风向 (2#)		南风	17. 2	100.3	12	0.055
(2#)		南风	16. 7	100.2	11	0.052
		南风	16.7	100.3	12	0.049
下风向 (3#)	lana lana	南风	17.3	100. 2	12	0.051
(3#)		南风	16. 7	100. 1	10	0.047
备注	1.该检测	结果仅	对本次样品	品负责。	2.ND 表示未检	Н.

以下空白,无其它检测结果与说明。

填报人:中主州

审核人: 大学 るの

签发人:7767

附件 5: 项目应急预案备案表

突发环境事件应急预案备案登记表

备案编号: 43068117006

单位名称	湖南现代环境科技股份有限公司屈原分公司						
法定代表人	杜明辉	经办人	詹江酃				
联系电话	15907303439	传真	\				
单位地址	屈原管理区堤防管理总站						

你单位上报的:《湖南现代环境科技股份有限公司屈原分公司突发环境事件应急预案》 经形式审查,符合要求,予以备案。

注:环境应急预案编号由县及县以上行政区划代码、年份和流水程序号组成。

附件 6: 项目环保投资一览表

屈原管理区营田镇生活垃圾无害化处理工程项目环保投资一览表

本工程总投资 6700 万元,其中广义环保投资 6700 万元。狭义环保投资 445 万元,占总投资比例 10.7%.环保设施投资情况见下表:

项目环保设施投资情况表

序号	投资分项	投资额(万元)	备注
-	广义环保投资	6700	
	占总投资比例	100%	
_	狭义环保投资		
1	渗滤液收集处理系统	445	
2	填埋气收集及燃烧系统	33	
3	垃圾坝及挡水堤	79	/
4	防渗系统	107	1
5	排水管网	18	1
6	排污专用管道	16	
7	厂前区绿化及护坡	22	1
总环保投资		720	1
	占总投资比例	10.7%	1

湖南现代环境科技股份有限公司屈原分公司 (托管运营方) 园百分公司

附件 7: 项目环保工作总结

屈原管理区营田镇生活垃圾无害化处理工程建设项目 环保"三同时"执行情况工作总结

一、项目基本情况

屈原管理区营田镇生活垃圾无害化处理工程(以下简称垃圾处理场)建设于屈原管理区堤防总站磊石三角洲,距营田镇规划区边缘直线距离 13km。该垃圾处理场总占地面积约 210 亩,填埋库区占地 160亩,建设规模为日处理生活垃圾 120t,项目填埋总库容为 83 万 m³,填埋服务年限为 15 年。项目 2010 年 12 月编制了《屈原管理区营田镇生活垃圾无害化处理工程环境影响报告书》,2010 年 12 月 6 日取得批复,2011 年 2 月 13 日开工建设,2013 年 12 月份建成,入试运行。

二、项目"三同时"执行情况

"三同时"制度,是指改建、扩建、新建项目和技术改造项目以及区域性开发建设项目的污染治理设施必须与主体工程同时设计、同时施工、同时投产的制度。本公司严格执行环评中对于各项污染物防治措施的相关要求,对项目入正常运营期间所产生的生活废水、厂区扬尘、设备噪声,按照环境保护达标排放的原则,采取针对性污染治理措施,保证水、气、声、渣的污染排放符合国家环境保护的相关标准。

(一) 大气污染的防治

1、填埋区域废气的控制

本项目主要废气为无组织排放的氨气、硫化氢、臭气浓度及填埋 区域产生的甲烷气体。项目设备、车间均经过专业单位设计,合理布 置。填埋施工实行单元填埋、随到随压、层层压实、当日覆盖制度, 采取洒水降尘、喷洒消毒杀菌剂等措施对扬尘恶臭污染进行了防治。 项目甲烷通过沼气石笼收集,再采用收集装置收集后进行燃烧。

(二) 水污染防治措施

项目生活污水经化粪池处理后用于周边农田及厂区菜地做农肥使用。清洗废水通过排水管道进入调节池,垃圾渗滤液先通过贯穿垃圾坝坝体的渗滤液导管流入调节池,经调节池进行水质水量调节后再进入污水处理系统处理。污水处理系统采预处理+厌氧+SBR+芬顿+BAFA+消毒工艺处理,渗透液处理处理达到《生活垃圾填埋场污染控制标准》(GB16889-2008)中表2规定的排放限值后,经污水专用管道达标排放。

(三)噪声污染防治

项目主要噪声源为风机、水泵以及推土机、挖掘机等,其噪声值在75~90dB(A)。该项目通过合理布局,优先选用低噪声设备,高噪声设备采取隔声、减振、消音措施,并在厂区四周设置隔声绿化带等系列措施进行消声降噪。另外为了将垃圾运输车辆噪声对周围正常生活和工作的影响降至最低,企业采取加强垃圾运输过程管理,定时维护保养运输车辆,尽量做到运输途中少鸣笛。

(四)固体废物的处理

本项目污泥通过污泥浓缩池处理后(经过毒性鉴别,达到卫生填

埋标准),定期脱水,运至垃圾填埋场进行填埋。

三、加强组织机构与制度建设

项目在建设过程中同时重视并做好环保工作,形成了较为健全的环境管理体系与制度,为本项目入运营后环境管理奠定了基础。 我公司受屈原管理区建设局的委托,对本垃圾填埋场进行托管运营。我司是专业的环保公司,建立了环境管理体系,制定了环境方针和环境目标,颁布了各项环境管理制度,成立了环境管理小组,明确了个部门责任、岗位责任人,并建立各部门环境指标和经济考核制度。企业环境管理体系、环境管理小组、人员配备、管理制度完全能够保证企业运营时的环境管理体系有效运行,确保环境污染最小化。

以上即我公司对填埋场废水、废气、固废、噪声污染防治设施 落实情况的一个简单汇报。对于填埋场的环境保护"三同时"工作, 我们或有瑕疵,但是会尽力做的更好,让政府满意,让周边群众满 意。同时希望各位领导、专家给我们提出宝贵意见,帮助我们将环 保工作做的更好。

湖南现代环境科技股份有限公司届原分公司(托管运营方)

2017.7.6

附件 8: 项目公众参与调查表

建设项目竣工环境保护验收公众意见调查表(个人)

项目名称

目

屈原管理区生活垃圾填埋场建设项目项

屈原管理区营田镇生活垃圾无害化处理工程(以下简称垃圾处理场)建设于屈原 管理区堤防总站磊石三角洲,距营田镇规划区边缘直线距离 13km。该垃圾处理场总占 地面积约 210 亩,填埋库区占地 160 亩,建设规模为日处理生活垃圾 120t,项目填埋总 库容为83万 m³,填埋服务年限为15年。项目2010年12月编制了《屈原管理区营田 镇生活垃圾无害化处理工程环境影响报告书》,2010年12月6日取得批复,2011年2 月 13 日开工建设, 2013 年 12 月份建成并投入试运行。项目现已按环评设计及环评批 复要求已建设完成并投入试运行并申请环保验收。

项目投产会产生一定量的生活废水、垃圾渗透液、废气、噪声等环境污染物,如未处 况 理则会对周围环境存在一定的影响。针对环境保护问题,项目采取了如下措施: 生活废水 及垃圾渗透液废水在厂内污水处理厂处理后达标排放;废气采用沼气石笼收集后进行燃烧。 噪声源合理布局, 经减震降噪降低对周边影响。

为做好该项目环境保护工作,提高公众的环保意识,现就该项目的环保竣工验收公众 意见进行调查,请您客观填写并提出宝贵意见,您的积极参与是我们做好工作的有力保证。 好工作的有力保证。

姓名	尚爱龙	性别	男	年龄	5/	文化程度	小学
联系电话	152920	246	34	地址	凤厦	与弱石山	
被调查者	首或单位与本	项目的	距离	a 200m 内	b 200m~	1km (c 1km	~5km d 5km 外

- 1. 您对该项目是否了解
 - b才解一些 a 了解

c不了解

2. 您对该项目最关心的是

a环境影响 b经济效益

c 就业安置 d其他

- 3. 您认为该项目施工期和试生产期间对您的工作、生活是否有影响? c 无影响
 - a/般影响 b严重影响

4. 您认为该项目对您的主要环境影响是

a水污染

b 大气污染

c 噪声污染 d 生态破坏

e 没有影响

5. 您认为该项目采取的环境防范措施是否可行

b 基本满意

c不满意 d不知道

6. 如果您对该项目的环保工作不满意,您是否向哪些部门反映意见: a是 (b否 如有反映,请写明受理部门及反映内容:

7. 您是否同意该项目进行环保竣工验收

、a同意

b不同意

c无所谓

8. 针对该项目的环境问题,您有什么建议或意见: 7/

调查人: 2020 调查时间: 7017.10、12

建设项目竣工环境保护验收公众意见调查表 (个人)

项目名称

屈原管理区生活垃圾填埋场建设项目项

屈原管理区营田镇生活垃圾无害化处理工程(以下简称垃圾处理场)建设于屈原 管理区堤防总站磊石三角洲,距营田镇规划区边缘直线距离 13km。该垃圾处理场总占 地面积约 210 亩,填埋库区占地 160 亩,建设规模为日处理生活垃圾 120t,项目填埋总 库容为 83 万 m^3 ,填埋服务年限为 15 年。项目 2010 年 12 月编制了《屈原管理区营田 镇生活垃圾无害化处理工程环境影响报告书》,2010年12月6日取得批复,2011年2 月 13 日开工建设, 2013 年 12 月份建成并投入试运行。项目现已按环评设计及环评批 复要求已建设完成并投入试运行并申请环保验收。

Ħ 概

项目投产会产生一定量的生活废水、垃圾渗透液、废气、噪声等环境污染物,如未处 理则会对周围环境存在一定的影响。针对环境保护问题,项目采取了如下措施: 生活废水 及垃圾渗透液废水在厂内污水处理厂处理后达标排放;废气采用沼气石笼收集后进行燃烧。 噪声源合理布局,经减震降噪降低对周边影响。

为做好该项目环境保护工作,提高公众的环保意识,现就该项目的环保竣工验收公众 意见进行调查,请您客观填写并提出宝贵意见,您的积极参与是我们做好工作的有力保证。 好工作的有力保证。

姓名	刘军	性别	男	年龄	42	文化程度	↑冷
联系电话	1320720 1840			地址	凤凰り磊なり		
被调查者或单位与本项目的距离			a 200m 内	b 200m~:	1km c/km^	′5km d 5km 外	

- 1. 您对该项目是否了解
 - a 了解 b/了解一些 c不了解
- 2. 您对该项目最关心的是
 - 、a/环境影响 b 经济效益
- c 就业安置 d其他
- 3. 您认为该项目施工期和试生产期间对您的工作、生活是否有影响?
 - (a / 般影响 b 严重影响 c 无影响
- 4. 您认为该项目对您的主要环境影响是
 - 、b/大气污染 a 水污染
 - c 噪声污染 d 生态破坏 e 没有影响
- 5. 您认为该项目采取的环境防范措施是否可行
 - a/满意
- b 基本满意 c 不满意
 - d不知道
- 6. 如果您对该项目的环保工作不满意,您是否向哪些部门反映意见: a是 如有反映,请写明受理部门及反映内容:
- 7. 您是否同意该项目进行环保竣工验收
 - → 同意
 - b不同意
- c无所谓
- 8. 针对该项目的环境问题,您有什么建议或意见:

调查人:分子以下 调查时间: 207.10.12

湖南亿科检测有限公司

建设项目竣工环境保护验收公众意见调查表 (个人)

项目名称

屈原管理区生活垃圾填埋场建设项目项

屈原管理区营田镇生活垃圾无害化处理工程(以下简称垃圾处理场)建设于屈原 管理区堤防总站磊石三角洲,距营田镇规划区边缘直线距离 13km。该垃圾处理场总占 地面积约 210 亩,填埋库区占地 160 亩,建设规模为日处理生活垃圾 120t,项目填埋总 库容为 83 万 m³,填埋服务年限为 15 年。项目 2010 年 12 月编制了《屈原管理区营田 镇生活垃圾无害化处理工程环境影响报告书》,2010年12月6日取得批复,2011年2 月 13 日开工建设, 2013 年 12 月份建成并投入试运行。项目现已按环评设计及环评批 复要求已建设完成并投入试运行并申请环保验收。

H 概

项目投产会产生一定量的生活废水、垃圾渗透液、废气、噪声等环境污染物,如未处 理则会对周围环境存在一定的影响。针对环境保护问题,项目采取了如下措施: 生活废水 及垃圾渗透液废水在厂内污水处理厂处理后达标排放;废气采用沼气石笼收集后进行燃烧。 噪声源合理布局, 经减震降噪降低对周边影响。

为做好该项目环境保护工作,提高公众的环保意识,现就该项目的环保竣工验收公众 意见进行调查,请您客观填写并提出宝贵意见,您的积极参与是我们做好工作的有力保证。 好工作的有力保证。

姓名	彭岩性别男	年龄	60	文化程度	初中
联系电话	151 1507 50801	地址	凤凰	生态电子	3/2
被调查者	省或单位与本项目的距离	a 200m 内	b 200m~1	km _c,1km′	~5km d 5km 外

1. 您对该项目是否了解

a 了解 b了解一些 c不了解

2. 您对该项目最关心的是

a/环境影响 b 经济效益

c 就业安置 d 其他

3. 您认为该项目施工期和试生产期间对您的工作、生活是否有影响?

a一般影响 b严重影响 c无影响

4. 您认为该项目对您的主要环境影响是

a水污染 b人气污染

c 噪声污染 d 生态破坏

e 没有影响

5. 您认为该项目采取的环境防范措施是否可行

a满意

b 基本满意

d不知道

c不满意 6. 如果您对该项目的环保工作不满意,您是否向哪些部门反映意见: 如有反映,请写明受理部门及反映内容:

7. 您是否同意该项目进行环保竣工验收

a/同意

b 不同意

c无所谓

8. 针对该项目的环境问题,您有什么建议或意见: 无

调查时间: nun

成交通知书

QYZCTP04-G17129

宇星科技发展 (深圳) 有限公司:

岳阳市屈原管理区垃圾处理场废水在线监测政府采购项目于 2017 年 11 月1日在岳阳市公共资源交易中心举行了政府采购竞争性谈判会议。现 确定你单位为本项目的成交人。请你单位接到本通知后 30 日内与采购单 位签订合同,自合同签订之日起 7 个工作日内报同级政府采购监督管理部门备案。逾期未签订合同的我方将按照《中华人民共和国政府采购法实施 条例》第 49 条规定处理。

待此通知!

附:成交内容:岳阳市屈原管理区垃圾处理场废水在线监测政府采购项目

报:

撰稿 赵景

复核 柳艳柏

(共 5份)

《产品购销合同》 2017年11月版

产品购销合同

合同编号: <u>20171108</u> 签约地点: <u>岳阳</u>

采购方: 岳阳市屈原管理区住房和城乡建设局 (以下简称"甲方")

法定代表人: 徐扩勇

地址:

电话:

传真:

供货方: 字星科技发展(深圳)有限公司 (以下简称"乙方")

法定代表人: 马刚

地址: 深圳市南山区高新技术产业园清华信息港研发楼 B 座 3 楼

电话: 0755-26030926

传真: 0755-26030935

为了保护甲、乙双方合法权益,根据《中华人民共和国合同法》、《中华人民共和

国政府采购法》及其他有关法律、法规、规章,双方签订本合同协议书。

采购项目名称: 岳阳市屈原管理区垃圾处理场废水在线监测政府采购项目

政府采购编号: 屈财采计[2017]030

委托代理编号: QYZCTP04-G17129

第一条、合同构成、规格型号、数量、合同金额:

序号	项目	规格型号	数量	单价 (元)	合计金额 (元)	备注
1	化学需氧量水质分析 仪	YX-COD _{Cr} - II	1	418000. 0 0	418000.00	1. 含字星 数据采集处
2	氨氮水质分析仪	YX-NH3-N-II	1			理系统软件
3	PH 分析仪	YX-WQMS(MP C-6110)	1			V1.2.0, 2. 详细参
4	超声波明渠流量计	YX-SFM	1			数见招投标
5	数据采集传输仪	工控机(研华 3150)	1			文件
6	水质在线监测基站控 制管理系统(V1.2.0)	V1. 2. 0	1			

第1页,共5页

《产品购销合同》 2017年11月版

7	电力保障单元(稳压、 UPS)	SVC-15KVA 15KW/C3K	1 ,		
8	采样取水系统(自动等 比例采样和超标留样 器装置)	字星定制	1		
9	辅助件	宇星定制	1		
10	安装调试费用、备品备 件	字星定制	1		
11	总排口巴歇尔槽、环保 验收	字星定制	1		

总计金额(小写)人民币: 418000.00元含税价,税率为17%)

总计金额(大写)人民币: _肆拾壹万捌仟元整

以上价格包括设备本体价格、运输、安装、调试、现场培训及质保期费用,不包括任何基建、辅助设施。但乙方可免费为甲方出具基建设计方案并提供相关技术支持。

第二条、付款方式及收款账号

- 1、付款方式:
- (1)设备进场后,甲方向乙方支付合同总金额的<u>50</u>%作为预付款,即人民币(大写)<u>贰拾万玖仟</u>元整(小写:209000.00元);
- (2)设备安装调试通过环保验收完毕之日起七日内,甲方向乙方支付合同总金额的 $\underline{45}$ %作为安装调试款验收,即人民币 (大写) <u>壹拾捌万捌仟壹佰</u>元整 (小写: $\underline{188100.00}$ 元)。
- (3) 质量保证期为一年,质保期满之日起七个工作日内,甲方向乙方支付合同总金额5%,即人民币(大写)贰万零玖佰元整(小写: 20900元)
- (4)以上款项在甲方收到对应的增值税专用发票后通过银行转账的方式向乙方支付。
 - 2、收款账户信息:
 - (1) 户名: 字星科技发展(深圳)有限公司
 - (2) 开户行: 工行深圳市海王支行
 - (3) 账号: 4000029319200284108

第三条 质量标准:

执行环境保护产品认定技术要求污染源在线自动监控(监测)系统数据传输标准(HJ/T 212-2005)及国家规定的水质建设、验收标准。

第2页, 共5页

湖南亿科检测有限公司

《产品购销合同》 2017年11月版

第四条、质量保证期

质量保证期为设备安装调试完成通过环保验收之目起运行满 12 个月为质保期满。 乙方通过环保验收后,应在不高于本地域营运维护费用的前提下与相关单位签订营运维 护合同。

第五条、交货时间

合同签署后,乙方于收到甲方预付款,且完成现场勘查之日起<u>3</u>日内将货物交付至本合同约定的交货地点。

第六条、交货地点: 湖南省岳阳市屈原管理区营田镇磊石山垃圾填埋场

收货人: __杨纪红______ 电话: _18607309709

注:本交货地点为乙方委托物流公司托运抵达之地点,本地点以外的其它地点乙方无托运之义务。甲方若对收货地点有特殊要求,应经乙方事先同意,并在本合同中体现或者以其它方式进行书面确认,否则由此导致的货物延时抵达,乙方无需承担任何责任,甲方不得以此为由推迟支付货款。

第七条、到货验收

- 1、甲方应按出厂设备《验货清单》对货品进行验收。按投标文件验收合格后,甲乙双方代表共同在《验货清单》上签字盖章予以确认,《验货清单》一式四份,甲、乙双方各执两份。乙方提供的字星数据采集处理系统软件 V1.2.0 必须与环保行政管理部门的监控管理系统对接。到货验收合格日期为《验货清单》上的签字盖章日期。
- 2、货到三日内,若甲方仍未对设备进行验收并签署《验货清单》,则以《货运签 收单》上的签字日期顺延三天为验货合格日期,乙方可以在设备安装调试期及运行期间 要求甲方对《验货清单》进行补签,日期依上文约定。货品经甲方到货验收合格后视为 风险转移。

第八条、设备安装条件

甲方负责现场安装条件准备,若因甲方原因导致现场安装条件不具备超过30日(以验货清单签署日期为起算日),甲方应自上述的一个月期限届满之日起七日内,按照本合同之规定支付安装调试款。

第九条、设备安装调试与验收

- 1、甲方应于设备安装调试完成之日起 10 日内组织工程验收,若设备安装调试完成之日起 30 日内甲方未能组织工程验收,则到期日视为工程验收合格日期。甲方应依本合同条款之规定支付相应货款。
 - 2、工程验收通过后,甲方应向乙方提供一份验收报告原件。

第十条、不可抗力

1、本合同所称不可抗力,是指地震、台风、水灾、火灾、雷击、战争以及其它本合同各方不能预见,并且对其发生和后果不能防止或不能避免且不可克服的客观情况。

第3页,共5页

- 2、因不可抗力造成合同货物延迟交货或安装的,合同约定的交货或安装日期应予以顺延,直到不可抗力解除后恢复计算时间。
 - 3、因不可抗力导致的货物交货安装延迟的, 乙方不承担责任。

第十一条、合同变更

本合同条款及合同附件如有变更,须由甲乙双方就变更条款签订补充协议,未变更 条款照原合同执行,补充协议与本合同具有同等法律效力。

第十二条、合同解除

- 1、甲乙双方可协商解除合同。
- 2、因不可抗力导致合同无法继续履行。
- 3、因一方原因导致本合同无法继续履行的,另一方可单方解除本合同。
- 4、本合同项下约定的双方义务履行完成时终止。

因上述原因导致合同终止的,甲乙双方应根据合同终止时的合同履行现状结算相关 费用。

第十三条、违约责任

- 1、甲方经验收发现乙方提供的货品不符合本合同约定的数量、规格、外观、质量的,乙方应负责免费更换,并承担由此产生的费用。
- 2、若甲方无故拒绝接收货品或拒绝对货品进行验收超过 30 日,由此产生的运费、保险费、保管费等相关费用由甲方承担。
- 3、若因甲方原因导致本合同无法继续履行的,乙方有权解除本合同,并就由此遭 受的经济损失要求甲方承担赔偿责任。
- 4、若甲方逾期支付本合同约定的款项,每逾期一日,甲方应按照欠款总额的日万分之三支付违约金。逾期付款超过30日,乙方有权单方解除本合同,要求甲方支付合同约定价款,并承担由此引起的违约责任及损失赔偿责任。

第十四、争议解决

- 1、未尽事宜遵照《合同法》或双方协商解决。
- 2、因履行本合同引起的或与本合同相关的一切争议,甲乙双方应协商解决,若协商不成,应向乙方所在地的人民法院提起诉讼。

第十五条、通知方式

1、本合同任何一方向对方发出本合同约定的任何通知,均应采用书面形式,且书面通知应通过邮政快递的方式送达对方。

邮政快递被对方签收视为通知送达;若对方拒收快递,则同样视为通知送达。 甲方收件人信息:

收件人姓名: 徐敏;

收件地址: _万家丽中路华雅国际财富大厦 903 室_;

收件人联系方式: 0731-84257998_。

第4页,共5页

21000

. A Second Second

《产品购销合同》 2017年11月版 乙方收件人信息: 收件人姓名: 杨纪红 收件地址: 岳阳市屈原管理区住房和城乡建设局; 收件人联系方式: 18607309709 2、在合同有效期内,任何一方的联系方式发生变更的,应当提前 5 日通过上述方 式书面通知对方, 否则因此产生的一切不利后果自行承担。 第十六条、其他 本合同自甲乙双方签字盖章之日起生效,附件为本合同不可分割的一部分,与本合 同具有同等的法律效力。 附件清单如下: 技术协议 第十七条 本合同一式四份,甲、乙双方各执两份,每份具同等法律效力。 甲乙双方签字盖章。积入 甲方(签章) 乙方(签章): 法人代表/授权代理人(签 签约日期:70 签约日期:20(年 第5页,共5页

湖南亿科检测有限公司

附件 10: 常规性监测协议

行科

学见

湖南亿科检测有限公司 省计量认证 (CMA) 实验室 委托合同书

合同编号: _____HNYK_JC[2017]-WTHT72

项目名称: 岳阳市屈原管理区营田镇 生活垃圾无害化处理填埋场项目常规性监测

委 托 方: 岳阳市屈原管理区住房和城乡建设局(以下简称甲方) 受委托方: 湖南亿科检测有限公司 (以下简称乙方)

甲方现委托乙方对我单位<u>岳阳市屈原管理区营田镇生活垃圾</u> <u>无害化处理填埋场</u>项目废水、废气、噪声进行常规性监测(详细监测因子见附件),经协商甲乙双方签订如下合同:

- 一、乙方按国家现行的监测规范及标准进行监测工作,向甲 方提供公正、准确、可靠的分析结果,负责检验数据及结果的 保密。
- 二、甲方为乙方提供相关委托检测资料及必要的现场检测条件。
- 三、委托费用明细如下:监测费用共计<u>人民币伍万元</u> (<u>Y50000</u>元),开具增值税专用发票。

四、合同签订后甲方先向乙方支付共计费用的 30%即<u>人</u> 民币 壹万伍仟元(¥15000 元)作为项目启动资金,乙方现场 采样时付款 50%即<u>人民币 贰万伍仟元整(¥25000 元)</u>甲 方拿到监测报告后一次性付清尾款 20%即<u>人民币 壹万元整</u> (¥10000 元)。

五、乙方开户银行名称及地址、账号为:

湖南亿科检测有限公司

开户银行:中国建设银行股份有限公司岳阳太阳桥支行

账 号: 43001601066052503123

湖南亿科检测有限公司

六、双方签订本合同应遵守的保密义务如下:

- 1、保密范围:甲方委托乙方的咨询内容及所监测数据属 保密范围。
- 2、未经对方许可,不得将对方提供的信息泄露、披露或 提供给第三方使用。
- 3、保密期限:双方对本合同所涉及的保密信息在本合同履行完毕后3年内仍然承担保密义务。

七、由甲方原因违反以上责任造成的一切经济损失由甲方负责赔偿;由乙方原因违反以上责任造成的一切经济损失由乙方负责赔偿。

八、未尽事宜,由双方协商解决。

九、合同一式四份, 甲乙双方各执二份。

甲方: 岳阳市屈原管理区住房 乙方:湖南亿科检测有限公司 和城乡建设局

代表签名:40分子

附件 11: 填埋场特许经营权出让协议(部分内容)

岳阳市屈原曾理区营田镇生活垃圾无害化处理场

特许经营权出让协议

岳阳介屈原管理区管理委员会

湖南现代威保特环保科技有限公司

二〇一三年一月三十一日

湖南亿科检测有限公司

屈原管理区生活垃圾无害化处理场 特许经营权出让协议 目录 第一部分 总则 3 一、声明和保证......6 三、垃圾处理量和垃圾处理服务费单价......8 四、甲乙双方的权利和义务......11 五、运营、维护与更新......14 九、争议解决......19 第三部分 需要说明的条款20 一、定义与解释.......20 二、特许运营开始前的移交......22 三、特许期结束后的移交......25 附件 1: 区管委会将垃圾填埋处理服务费列入财政预算的承诺书......30 附件 2: 区管委会授权委托书......31

屈原管理区生活垃圾无害化处理场特许经营权出让协议

第一部分 总则

出让方:岳阳市屈原管理区管理委员会 (以下简称甲方)

受让方:湖南现代威保特环保科技有限公司 (以下简称乙方)

为加强城市环境基础设施建设, 规范城市生活垃圾处理市 场,根据《市政公用事业特许经营管理办法》(建设部令126号) 和《湖南省市政公用事业特许经营条例》(湖南省人民代表大会 常务委员会公告第60号)及中华人民共和国相关法律法规,经 招商谈判,确定湖南现代威保特环保科技有限公司受让岳阳市 屈原管理区营田镇生活垃圾无害化处理场的特许经营权。经双 方协商一致,签订本协议。

- 一、特许经营权的授予 甲方授予乙方对岳阳市屈原管理 区营田镇生活垃圾无害化处理场的特许经营权。
- 二、特许经营权的出让价格 特许经营权出让总价款为贰 仟万元(¥20,000,000.00)。

支付方式及支付时间:

双方签订协议后,乙方出让款的支付:

- 1、2013年1月31日下午17:00时前支付总金额的60%, 即壹仟贰佰万元(¥12,000,000.00)。
- 2、2013年3月1日下午17:00时前支付总金额的30%,即 陆佰万元(¥6,000,000.00)。

3、2014年3月1日下午17:00 时前支付总金额的10% 贰佰万元(¥2,000,000.00)。

收款账户信息:

账 户 名: 岳阳市屈原管理区城市建设投资有限公司

开户银行: 中国农业银行屈原支行中兴分理处

账号: 4277 0104 0003 020

特许经营期未满,如进场垃圾达到设计库容量(100万n而导致生活垃圾不能进场处理时,则特许经营期限以实际运时间为准。

特许经营期满,进场垃圾未达到设计库容量,垃圾场实运行状况良好,且国家法律法规、政策规定未禁止,乙方可经营期满前十二(12)个月向甲方申请协议顺延运营期限(圾处理服务费根据当时垃圾处理场现状测算运营成本的方式行协商),甲方应当在收到申请六十(60)日内做出答复,逾:未答复的视为同意延长项目运营期限。

四、特许经营权的投资回报

特许经营权的投资回报含在垃圾处理服务费单价中, 乙之以收取垃圾处理服务费作为投资回报。

五、进场垃圾保底量

屈原管理区生活垃圾无害化处理场

特许经营期的前三年(2013年3月1日至2016年2月29日)日保底量按100吨/天计算,2016年3月1日起日保底量按120吨/天计算。

六、垃圾处理处置服务费单价

垃圾处理处置服务费单价基数为 133.5 元/吨, 其中

- (1)由屈原管理区财政局支付部分为 68 元/吨,该部分每两年调整一次,调价依据为:根据湖南省统计局公布的上一年度 CPI 指数进行一次调整。
- (2)由屈原管理区城市建设投资有限公司支付部分为65.5元/吨。

七、垃圾场运营质量标准

《垃圾填埋场污染控制标准》(GB16889-2008)、《生活垃圾卫生填埋技术规范》(CJJ17-2004)。

八、组成本协议的文件包括:

- (1) 本协议及附件;
- (2) 双方签订的补充协议、移交清单、红线图等书面文件 均视为本协议的组成部分。

九、协议生效

本协议一式十份,甲、乙双方各执五份,均具备同等法律效力。双方约定并签字、盖章后生效。

- (1) 协议订立时间: 2013年 1 月 31 日。
- (2) 协议订立地点: 湖南现代威保特环保科技有限公司会议室。

医原管理区生活垃圾无害化处理场

议

特许经营权出让协议

足够一(1)个月使用的消耗性备品备件和事故抢修的备品备件,以及垃圾处理场正常生产一(1)个月所需的原辅材料、药剂,以保证移交后项目设施不间断运行。

- (2) 乙方应向甲方或其指定机构,提交生产、销售项目设施所需全部备品备件的厂商名单及具体价格。
 - 3.5 保险和承包商保证的转让

在移交日, 乙方应将所有的保单、暂保单和背书, 以及承 包商、制造商和供应商提供的尚未期满的担保、保证等利益, 在可转让的范围内无偿移交给甲方或其指定机构。

3.6 技术授予

在移交日,乙方应将其有权移交的与项目设备运营和维护 有关的所有技术(无论以许可或其他合法方式取得的),全部无 经授予甲方或其指定机构使用,并确保甲方或其指定机构不会 图使用这些技术而承担任何侵权责任。

3.7人员和人员培训

甲方或其指定机构需要在移交日之前,派驻人员到垃圾处 **理场进**行培训或学习的,乙方应免费为上述人员提供技术培训。

3.8 协议的转移

(1)移交时,乙方应将与项目设施有关的所有未履行完毕 **的设计**协议、施工协议、设备采购协议、安装协议,转移给甲 方或其指定机构,由其承接乙方在该等协议项下的全部权益和 **23**,但以下第(2)、(3)项所述义务除外。

但因法律规定、协议性质或特别约定俗成的无法转移的办议除外。

- (2)如乙方未履行完毕其在该协议项目的付款义务,乙元应继续履行。在任何情况下,该付款义务不应由甲方或其扎定机构承担。
- (3) 如乙方未履行完毕其在该协议下的其他义务,乙方应继续履行。如甲方或其指定机构为乙方履行该项义务提供必要协助,由此导致该机构增加开支、费用的,该费用全部由乙万承担。

3.9 风险转移

乙方承担移交完毕日前因乙方原因导致的项目设施的全 3 或部分损失或损坏的风险。

自移交完毕日起,该风险由甲方或其指定机构承担,但该风险是由乙方或其人员的过错所致,或本协议另有约定的除外。

3.10 移交费用

双方各自负责因为移交发生的费用和支出。

3.11 移交资产状况

移交日,项目设施的状况,应符合移交委员会制定的升。 本协议各方授权代表认定的移交标准。

(本页以下空白)

医德萱理区生活垃圾无害化处理场 が议 《此页无正文》 土土方: (公章) 岳阳市屈原管理区管 上定代表人: (签字) 三代理人: (签字) 分子的 话: 真: 刑户银行: 불: 政崇码: 新田期: 2017、1・31、

特许经营权出让协议

受让方:(公章)湖南积州城保持环保地址: 法定代表人:(签字) 委托代理人:(签字)

电话:

传 真:

开户银行:

账 号:

邮政编码:

签订日期: 2013.1.31.

医厚管理区生活垃圾无害化处理场

特许经营权出让协议

附件 1: 区管委会将垃圾填埋处理服务费列入财政预算的承诺书

关于将垃圾处理服务费纳入财政预算的承诺书

南南现代威保特环保科技有限公司:

根据岳阳市屈原管理区营田镇生活垃圾无害化处理场项目 特许经营协议的约定,你公司在特许经营期内所收取的垃圾处 理服务费按月度分别由岳阳市屈原管理区财政局和岳阳市屈原管理区城市建设投资有限公司支付。如岳阳市屈原管理区财政 局或城市建设投资有限公司未履行上述支付义务,岳阳市屈原管理区管理委员会将承担连带责任。

为确保岳阳市屈原管理区营田镇生活垃圾无害化处理场正 常运作,确保垃圾处理服务费能按时、足额支付,经研究,同 意将垃圾处理服务费由财政支付部分纳入岳阳市屈原管理区每 年度财政预算。

医原管理区生活垃圾无害化处理场

特许经营权出让协议

附件 2: 区管委会授权委托书

授权委托书

委托单位: 屈原管理区管理委员会

法定代表人: 许平亚

职务: 屈原管理区管理委员会主任

受委托单位: 屈原管理区住房和城乡建设局

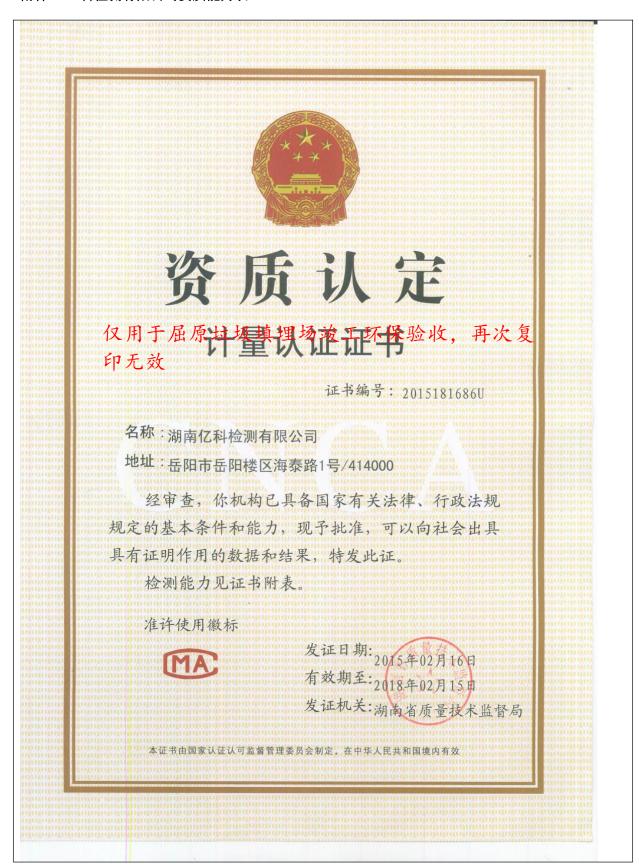
法定代表人: 徐扩勇

职务: 屈原管理区住房和城乡建设局局长

委托事项: 受委托单位代表委托单位与湖南现代威保特环保科技有限公司签订"岳阳市屈原管理区营田镇生活垃圾无害化处理场特许经营权出让协议"。

委托权限: 特别授权:

- (1)包括与湖南现代威保特环保科技有限公司就合同条款进行商定、起草,并签订正式合同文本;
- (2)对合同的实施进行监督和管理,并有权签订补充合同 及相关协议。


委托单位: 屈原管理区管理委员会(盖章)

法定代表人: _____

委托日期: 二零一三年一月三十一日

(签字)

附件 12: 科检测有限公司资质能力表

湖南亿科检测有限公司 102

批准: 湖南亿科检测有限公司 计量认证范围及限制要求

证书编号: 2015181686U

序号	检测产品/ 类别	检测项目/参数		检测标准(方法)名称	限制范围
		序号	名称	及编号(含年号)	或说明
	职业卫生参数	26	粉尘	《工作场所空气中粉尘测定 第一部分: 总粉尘浓度》 GBZ/T 192.1 -2007	
	职业卫生参数	27	氡	《空气中氡浓度的闪烁瓶测 定方法》 GBZ-T 155-2002	
	水质参数	1	水温	《水质 水温的测定 温度计 或颠倒温度计测定法》 GB/T 13195-1991	只做温度记 法
	水质参数	2	pH值	《水质 pH值的测定 玻璃电 极法》 GB/T 6920-1986	
	水质参数	3	电导率	《水和废水监测分析方法》 (第四版 国家环保总局2002 年)	
	水质参数	4	色度	《水质 色度的测定 稀释倍数法》 GB/T 11903-1989	ħ.
	水质参数	5	浊度	《水质 浊度的测定 目视比 浊法》 GB/T 13200-1991	
	水质参数	6	透明度	《水和废水监测分析方法》 (第四版)国家环境保护总 局 (2002年)	只做塞氏盘 法
Maj	水质参数	7	悬浮物	《水质 悬浮物的测定 重量 法》 GB/T 11901-1989	
	水质参数	8	全盐量	《水质 全盐量的测定 重量 法》 HJ/T 51-1999	
	水质参数	9	矿化度	《水和废水监测分析方法》 (第四版 国家环保总局2002 年)	
11 - 3	水质参数	10	溶解性总固体	《生活饮用水标准检验方法 感官性状和物理指标》 GB/T 5750.4-2006	
	水质参数	11	总硬度	《水质 钙和镁总量的测定 EDTA滴定法》 GB/T 7477- 1987	
	水质参数	12	高锰酸盐指数	《水质 高锰酸盐指数的测 定》 GB/T 11892-1989	
	水质参数	13	耗氧量	《生活饮用水标准检验方法 有机综合指标》 GB/T 5750.7-2006	
	水质参数	14	溶解氧	《水质 溶解氧的测定 碘量 法》 GB 7489-1987	

第3页 共13页

批准: 湖南亿科检测有限公司 计量认证范围及限制要求

序号	检测产品/	检测	· 則项目/参数	检测标准(方法)名称	限制范围或说明	
一	类别	序号	名称	及编号(含年号)		
	水质参数	15	化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》 GB 11914- 1989		
	水质参数	16	生化需氧量	《水质 五日生化需氧量 (BOD5)的测定 稀释与接种 法》 HJ 505-2009	10年	
	水质参数	17	总碱度	《水和废水监测分析方法》 (第四版 国家环保总局2002 年)	只做酸碱指 示剂滴定法	
	水质参数	18	酸度	《水和废水监测分析方法》 (第四版 国家环保总局2002 年)	只做酸碱指 示剂滴定法	
	水质参数	19	游离氯和总氯	《水质 游离氯和总氯的测定 N, N-二乙基-1, 4-苯二胺分光光度法》 HJ 586-2010		
	水质参数	20 社	氯化物	《水质 氯化物的测定 硝酸银滴定法》 GB/T 11896- 1989	只做硝酸银 容量法	
A,	水质参数	21		《水质 氟化物的测定 离子 选择电极法》 GB/T 7484- 1987	只做离子选 择电极法	
	水质参数	22	硫化物	《水质 硫化物的测定 亚甲 蓝分光光度法》 GB/T 16489-1996	ts	
	水质参数	23	硫酸盐	《水质 硫酸盐的测定 铬酸钡分光光度法(试行)》 HJ/T 342-2007		
	水质参数	24	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ 535- 2009		
	水质参数	25	硝酸盐氮	《水质 硝酸盐氮的测定 酚二磺酸分光光度法》 GB/T 7480-1987 《水质 硝酸盐 氮的测定 紫外分光光度法 (试行)》 HJ/T 346-2007	5.	
	水质参数	26	亚硝酸盐氮	《水质 亚硝酸盐氮的测定 分光光度法》 GB/T 7493- 1987	k	

第4页 共13页

批准: 湖南亿科检测有限公司 计量认证范围及限制要求

序号	检测产品/	检测	則项目/参数	检测标准(方法)名称	限制范围或说明	
广 写	类别	序号	名称	及编号(含年号)		
	水质参数	15	化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》 GB 11914- 1989		
	水质参数	16	生化需氧量	《水质 五日生化需氧量 (BOD5)的测定 稀释与接种 法》 HJ 505-2009	191年	
# 2 (M)	水质参数	17	总碱度	《水和废水监测分析方法》 (第四版 国家环保总局2002 年)	只做酸碱指 示剂滴定法	
	水质参数	18	酸度	《水和废水监测分析方法》 (第四版 国家环保总局2002 年)	只做酸碱指 示剂滴定法	
	水质参数	19	游离氯和总氯	《水质 游离氯和总氯的测定 N, N-二乙基-1, 4-苯二胺分光光度法》 HJ 586-2010	4	
	水质参数	20 年	氯化物	《水质 氯化物的测定 硝酸银滴定法》 GB/T 11896- 1989	只做硝酸银 容量法	
	水质参数	21	认藏花物草	《水质 氟化物的测定 离子 选择电极法》 GB/T 7484- 1987	只做离子选 择电极法	
	水质参数	22	硫化物	《水质 硫化物的测定 亚甲 蓝分光光度法》 GB/T 16489-1996		
	水质参数	23	硫酸盐	《水质 硫酸盐的测定 铬酸 钡分光光度法(试行)》 H.J/T 342-2007		
	水质参数	24	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ 535- 2009		
	水质参数	25	硝酸盐氮	《水质 硝酸盐氮的测定 酚二磺酸分光光度法》 GB/T 7480-1987 《水质 硝酸盐 氮的测定 紫外分光光度法 (试行)》 HJ/T 346-2007	ts.	
	水质参数	26	亚硝酸盐氮	《水质 亚硝酸盐氮的测定 分光光度法》 GB/T 7493- 1987	k	

第4页 共13页

批准: <u>湖南亿科检测有限公司</u> 计量认证范围及限制要求

证书编号, 2015181686[

序号	检测产品/		则项目/参数	检测标准(方法)名称	限制范围 或说明	
	类别	序号	名称	及编号(含年号)		
	水质参数	27	总氦	《水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法》 HJ 636-2012		
	水质参数	28	总磷	《水质 总磷的测定 钼酸 铵分光光度法》 GB/T 11893-1989		
	水质参数	29	挥发酚	《水质 挥发酚的测定 4-氨基安替比林分光光度法》 HJ 503-2009		
	水质参数	30	阴离子表面活 性剂	《水质 阴离子表面活性剂 的测定 亚甲蓝分光光度法 》 GB/T 7494-1987		
	水质参数	31	甲醛	《水质 甲醛的测定 乙酰丙酮分光光度法》 HJ 601-2011		
	水质参数	32	苯胺类	《水质 苯胺类化合物的测定 N-(1-萘基) 乙二胺偶氮分光光度法》 GB/T 11889-1989		
	水质参数	33	氰化物	《水质 氰化物的测定 容量 法和分光光度法》 HJ 484-2009	只做异烟酸 吡唑酮分为 光度法	
	水质参数	34	石油类和动植 物油	《水质 石油类和动植物油 的测定 红外分光光度法》 HJ 637-2012		
	水质参数	35	菌落总数	《水和废水监测分析方法》 (第四版 国家环保总局 2002年)		
	水质参数	36	总大肠菌群	《水和废水监测分析方法》 (第四版 国家环保总局2002 年)	只做多管发 酵法	
	水质参数	37	粪大肠菌群	《水质 粪大肠菌群数的测定 多管发酵法和滤膜法 (试行)》 HJ/T 347-2007	只做多管发 酵法	
	水质参数	38	六价铬	《水质 六价铬的测定 二苯 碳酰二肼分光光度法》 GB/T 7467-1987		
	水质参数	39	总铬	《水质 总铬的测定》 GB 7466-1987 《水和废水监测 分析方法》(第四版 国家 环保总局2002年)		

第5页 共13页

批准:<u>湖南亿科检测有限公司</u> 检验检测的能力范围

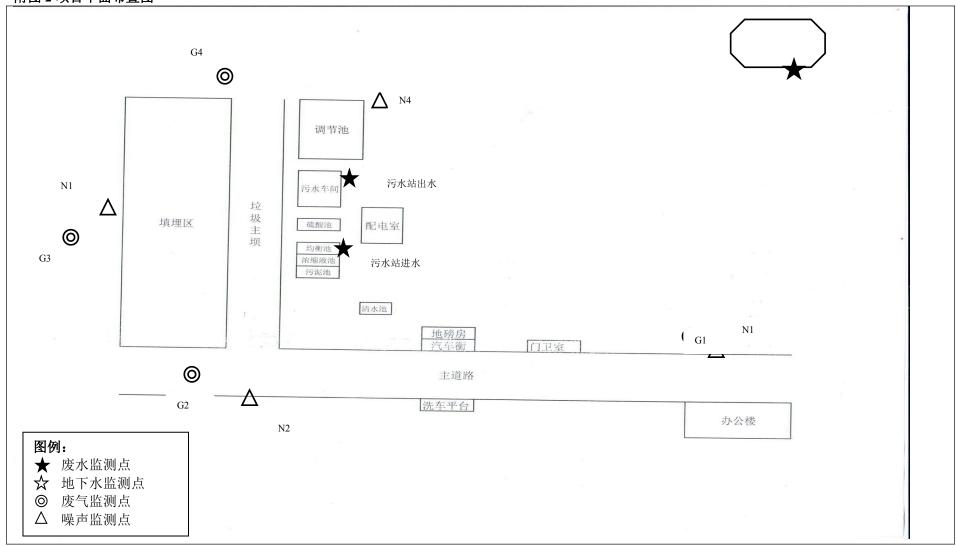
证书编号: 161812050369

序	类别(产品/		7/项目/参数	依据的标准(方法)	限制范围	200	
号	项目/参数)	序号 名称		名称及编号(含年号)		说明	
四	空气、废气检测 参数	24	氮氧化物	《环境空气 氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》 HJ 479-2009 《空气和废气监测分析方法》(国家环保总局2003年第四版)《固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法》 HJ/T 43-1999			
四	空气、废气检测 参数	25	二氧化氮	《环境空气 氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法》 HJ 479-2009			
四	空气、废气检测 参数	26	愛以证专	《空气质量 氨的测定 次 氯酸钠 水杨酸分光光度法 》,HJ 534-2009 《环境 空气和废气 氨的测定 纳 氏试剂分光光度法》 HJ 533-2009			
四	空气、废气检测 参数	27	硫化氢	硫化氢的测定 亚甲基蓝分 光光度法 《空气与废气监 测分析方法》(第四版增 补版)国家环保总局(2003 年)	钡分光光		
四	空气、废气检测 参数	28	硫酸雾	《空气和废气监测分析方法》(国家环保总局2003 年第四版)			
四	空气、废气检测 参数	29	氟化物	《大气固定污染源 氟化物的测定 离子选择电极法》 HJ/T 67-2001 《环境空气 氟化物的测定 滤膜采样氟 离子选择电极法》 HJ 480-2009			

第19页 共31页

附件 13: 建设项目工程竣工环境保护"三同时"验收登记表

编号: 验收类别: №验收报告 □验收表 □登记卡 项目经办人:


細亏:		业収	尖 別: №	应4人1人口	□短収表		化下			贝日	ハノ (:			
建设项 名称		屈原管理区城市生活垃圾处理工程 建设项目					建设地点 屈原管			管理区磊石三角洲				
建设单位	<u>, ù</u>		屈原管理	区建设管	理局	邮政	邮政编码		114000		电话	电话 15907303439		
行业类	别	N77 生态保护和环境治理业					项目性质			□新建 □改扩建 □技术改造				
设计 生产能	カ カ	120t/d				建	建设项目开工日期			2011.2				
实际 生产能	h	120 t/d				ž	投入试运行日期			2013.12				
报告书(表)	岳阳市环境保护局				文号	文号 -			时间 20010.12.6			12.6	
初步设计	计			/		文号	文号 /			时间	/			
控制区			环保:				文号			时间				
报告书(美编制单位		中国		'		·	投资总概算		6700 万元					
玩保设施 可保设施 设计单位	施			-		环保	环保投资(狭义)		720 万元		T	比例	10.7%	
环保设施工单位	施			-		乡	总概算 实际总投资		6700 万元			<u> </u>		
一	施	を			检测有限公司		环保投资(狭义)		720 万元		元	比例	10.7%	
废水治:			噪声治理			固废治理		绿化及生态		态	其它			
445		33							22					
新增废水 理设施能		100) t/d	新增废气处理设 施能力			Nm³/h		年平均工作时		乍时	365d/a		
	., 4				污染	控制	指	标						
控制项目	原有 排放量 (1)	<u>.</u>	新建 部分 ^空 生量 (2)	新部分理	以新带 老削减 量 (4)	排放增 减量 (5)	排放 总量 (6)	允i 排述 量(汝	区域 削减 量 (8)	处理 前 浓度 (9)	实际 排放 浓度 (10)	允许 排放 浓度 (11)	
废水														
COD														
NH ₃ -N														
SS														
石油类									_					
废气									+					
SO ₂									+			1	1	
NO _X VOC _S									+					
 固废								+	+			+		
	⋾ ₽ ∨	104 ==	- 半 3/年 .		<u> </u>	本昌 市	/年	 其他项目	1 47 4-1	n击/左	<u> </u>			

废水、固废量:吨/年; 其他项目均为吨/年 废气中污染物浓度:毫克/立方米

单位:废气量:×10⁴标米³/年; 废水、固废量:吨/年; 废水中污染物浓度:毫克/升; 废气中污染物浓度:毫克/注:此表附在监测报告内。此表最后一格为该项目的特征污染物。

附图 2 项目平面布置图

附图 3 项目现场及环保设施照片

填埋区大门

垃圾卸车

摊平作业

已填埋场地

作业车辆

渗滤液调节池

芬顿处理池

芬顿加药装置

硝化罐

消毒装置

罗茨鼓风机

污水处理站全貌

污水处理药剂

实验室

电控室


办公区域

周边住户(已经搬迁)

周边住户(已经搬迁)

地下水质监测井

出水口

出水池

附近山塘

甲烷收集管道

甲烷燃烧装置